Skip to main content
Log in

Adaptive discontinuous Galerkin finite element methods for the Allen-Cahn equation on polygonal meshes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we develop a polygonal mesh adaptation algorithm for a fully implicit scheme based on discontinuous Galerkin (DG) finite element methods in space and backward Euler method in time to solve the Allen-Cahn equation. The mathematical framework and a procedure for solving this nonlinear equation are given. We extend the DG discretization with a polygonal mesh adaptation method to save computation time and capture the thin interfaces more accurately. A criterion based on the local value of the phase field function gradient is used to select the target element for refinement and coarsening, and then a 4-node polygonal mesh refinement strategy is adopted by connecting the midpoint of each edge to the barycenter of the target element. Using numerical tests, including motion by the mean curvature, curvature-driven flow, the Allen-Cahn equation with a logarithmic free energy, the Allen-Cahn equation with advection, and the application for image segmentation, we verify the accuracy, efficiency, and capabilities of the adaptive DG on polygonal meshes and confirm the decreasing property of the discrete energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alba, M.B.: Locally adaptive phase-field models and transition to fracture. PhD thesis, Univ. Politécnica de Catalunya (2011)

  2. Alpak, F.O., Riviére, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Computat. Geosci. 20(5), 881–908 (2016)

    MathSciNet  Google Scholar 

  3. Antonietti, P.F., Bonaldi, F., Mazzieri, I.: A high-order discontinuous Galerkin approach to the elasto-acoustic problem. Comput. Methods Appl. Mech. Engrg. 358, 112634 (2020)

    ADS  MathSciNet  Google Scholar 

  4. Antonietti, P.F.: Bonetti, S., Botti, M.: Discontinuous Galerkin approximation of the fully-coupled thermo-poroelastic problem. arXiv: (2022). arXiv:2205.04262v3

  5. Antonietti, P.F., Botti, M., Mazzieri, I., Poltri, S.N.: A high-order discontinuous Galerkin method for the poro-elasto-acoustic problem on polygonal and polyhedral grids. SIAM J. Sci. Comput. 44(1), B1–B28 (2022)

    MathSciNet  Google Scholar 

  6. Antonietti, P.F., Dassi, F., Manuzzi, E.: Machine learning based refinement strategies for polyhedral grids with applications to virtual element and polyhedral discontinuous Galerkin methods. J. Comput. Phys. 469, 111531 (2022)

    MathSciNet  Google Scholar 

  7. Antonietti, P.F. Facciolá, C., Houston, P., Mazzieri, I., Pennesi, G., Verani, M.: High-order discontinuous Galerkin methods on polyhedral grids for geophysical applications: seismic wave propagation and fractured reservoir simulations. In: Daniele Antonio Di Pietro, Luca Formaggia, and Roland Masson,(eds.), Polyhedral Methods in Geosciences, pages 159–225. Springer International Publishing (2021)

  8. Antonietti, P.F., Facciola, C., Russo, A., Verani, M.: Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. SIAM J. Sci. Comput. 41(1), A109–A138 (2019)

    MathSciNet  Google Scholar 

  9. Antonietti, P.F., Facciolá, C., Verani, M.: Unified analysis of discontinuous Galerkin approximations of flows in fractured porous media on polygonal and polyhedral grids. Mathematics in Engineering 2(2), 340–385 (2020)

    MathSciNet  Google Scholar 

  10. Antonietti, P.F., Facciolá, C., Verani, M.: Polytopic discontinuous Galerkin methods for the numerical modelling of flow in porous media with networks of fractures. Comput. Math. Appl. 116, 116–139 (2022)

    MathSciNet  Google Scholar 

  11. Antonietti, P.F., Farenga, N., Manuzzi, E., Martinelli, G., Saverio, L.: Agglomeration of polygonal grids using graph neural networks with applications to multigrid solvers. (2023). arXiv: 2210.17457

  12. Antonietti, P.F., Giani, S., Houston, P.: hp-Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013)

    MathSciNet  Google Scholar 

  13. Antonietti, P.F., Houston, P.: A pre-processing moving mesh method for discontinuous Galerkin approximations of advection-diffusion-reaction problems. Int. J. Numer. Anal. Model. 5(4), 704–728 (2008)

    MathSciNet  Google Scholar 

  14. Antonietti, P.F., Houston, P., Hu, X., Sarti, M., Verani, M.: Multigrid algorithms for \(hp\)-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54, 1169–1198 (2017)

    MathSciNet  Google Scholar 

  15. Antonietti, P.F., Houston, P., Pennesi, G.: Fast numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods. J. Sci. Comput. 77(3), 1339–1370 (2018)

    MathSciNet  Google Scholar 

  16. Antonietti, P.F., Houston, P., Pennesi, G., Süli, E.: An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids. Math. Comput. 89(325), 2047–2083 (2020)

    MathSciNet  Google Scholar 

  17. Antonietti, P.F., Manuzzi, E.: Refinement of polygonal grids using convolutional neural networks with applications to polygonal discontinuous Galerkin and virtual element methods. J. Comput. Phys. 452,(2022)

  18. Antonietti, P.F., Mascotto, L., Verani, M., Zonca, S.: Stability analysis of polytopic discontinuous Galerkin approximations of the Stokes problem with applications to fluid-structure interaction problems. J. Sci. Comput. 90, 23 (2022)

    MathSciNet  Google Scholar 

  19. Antonietti, P.F., Mazzieri, I.: High-order discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 342, 424–437 (2018)

    ADS  MathSciNet  Google Scholar 

  20. Antonietti, P.F., Mazzieri, I., Migliorini, F.: A discontinuous Galerkin time integration scheme for second order differential equations with applications to seismic wave propagation problems. Comput. Math. Appl. 134, 87–100 (2023)

    MathSciNet  Google Scholar 

  21. Antonietti, P.F., Mazzieri, I., Muhr, M., Nikolić, V., Wohlmuth, B.: A high-order discontinuous Galerkin method for nonlinear sound waves. J. Comput. Phys. 415, 109484 (2020)

    MathSciNet  Google Scholar 

  22. Antonietti, P.F., Melas, L.: Algebraic multigrid schemes for high-order discontinuous Galerkin methods. SIAM J. Sci. Comput. 42(2), A1147–A1173 (2020)

    MathSciNet  Google Scholar 

  23. Antonietti, P.F., Pennesi, G.: V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes. J. Sci. Comput. 78(1), 625–652 (2019)

    MathSciNet  Google Scholar 

  24. Antonietti, P.F., Verani, M., Vergara, C., Zonca, S.: Numerical solution of fluid-structure interaction problems by means of a high order discontinuous Galerkin method on polygonal grids. Finite Elem. Anal. Des. 159, 1–14 (2019)

    MathSciNet  Google Scholar 

  25. Aristotelous, A.C.: Adaptive discontinuous Galerkin finite element methods for a diffuse interface model of biological growth. Ph.D. Thesis, Univ. Tennessee (2011)

  26. Aristotelous, A.C., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discr. Continu. Dyn. Syst. Ser. B 18, 2211–2238 (2013)

    MathSciNet  Google Scholar 

  27. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  Google Scholar 

  28. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)

    MathSciNet  Google Scholar 

  29. Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46(4), 1704–1731 (2008)

    MathSciNet  Google Scholar 

  30. Beneš, M., Chalupecký, V., Mikula, K.: Geometrical image segmentation by the Allen-Cahn equation. Appl. Numer. Math. 51(2–3), 187–205 (2004)

    MathSciNet  Google Scholar 

  31. Boal, D.: Mechanics of the cell. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  32. Brunet, V.G., Lameyre, B.B.: Object recognition and segmentation in videos by connecting heterogeneous visual features. Comput. Vis. Image Underst. 111(1), 86–109 (2008)

    Google Scholar 

  33. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

  34. Cangiani, A., Chapman, J., Georgoulis, E.H., Jensen, M.: On the stability of continuous-discontinuous Galerkin methods for advection-diffusion-reaction problems. J. Sci. Comput. 57(2), 313–330 (2013)

    MathSciNet  Google Scholar 

  35. Cangiani, A., Dong, Z., Georgoulis, E.H.: hp-Version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39(4), A1251–A1279 (2017)

    MathSciNet  Google Scholar 

  36. Cangiani, A., Dong, Z., Georgoulis, E.H.: hp-Version discontinuous Galerkin methods on essentially arbitrarily-shaped elements. Math. Comput. 9, 1–35 (2022)

    MathSciNet  Google Scholar 

  37. Cangiani, A., Dong, Z., Georgoulis, E.H.: A posteriori error estimates for discontinuous Galerkin methods on polygonal and polyhedral meshes. (2022). arXiv: 2208.08685v1

  38. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: M2AN, 50, 699–725 (2016)

  39. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Springer Briefs in Mathematics. Springer (2017)

  40. Cangiani, A., Georgoulis, E.H., Giani, S., Metcalfe, S.: \(hp\)-Adaptive discontinuous Galerkin methods for non-stationary convection-diffusion problems. Comput. Math. Appl. 78, 3090–3104 (2019)

    MathSciNet  Google Scholar 

  41. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. S. 24(10), 2009–2041 (2014)

    MathSciNet  Google Scholar 

  42. Cangiani, A., Georgoulis, E.H., Jensen, M.: Discontinuous Galerkin methods for mass transfer through semipermeable membranes. SIAM J. Numer. Anal. 51(5), 2911–2934 (2013)

    MathSciNet  Google Scholar 

  43. Cangiani, A., Georgoulis, E.H., Jensen, M.: Discontinuous Galerkin methods for fast reactive mass transfer through semi-permeable membranes. Appl. Numer. Math. 104, 3–14 (2016)

    MathSciNet  Google Scholar 

  44. Cangiani, A., Georgoulis, E.H., Metcalfe, S.: An a posteriori error estimator for discontinuous Galerkin methods for non-stationary convection-diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2014)

    MathSciNet  Google Scholar 

  45. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    MathSciNet  PubMed  Google Scholar 

  46. Cangiani, A., Georgoulis, E.H., Sabawi, M.: A posteriori error analysis for implicit-explicit hp-discontinuous Galerkin timestepping methods for semilinear parabolic problems. J. Sci. Comput. 82, 26 (2020)

    MathSciNet  Google Scholar 

  47. Cangiani, A., Georgoulis, E.H., Sabawi, Y.A.: Adaptive discontinuous Galerkin methods for elliptic interface problems. Math. Comput. 87(314), 2675–2707 (2018)

    MathSciNet  Google Scholar 

  48. Cangiani, A., Georgoulis, E.H., Sabawi, Y.A.: Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems. J. Comput. Appl. Math. 367, 112397 (2020)

    MathSciNet  Google Scholar 

  49. Cangiani, A., Georgoulis, E.H., Sutton, O.J.: Adaptive non-hierarchical Galerkin methods for parabolic problems with application to moving mesh and virtual element methods. Math. Mod. Meth. Appl. S. 31(4), 711–751 (2021)

    MathSciNet  Google Scholar 

  50. Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models.SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

  51. Chan, T., Shen, J.: Mathematical models for local non-texture inpaintings. SIAM J. Appl. Math. 62, 1019–1043 (2002)

    Google Scholar 

  52. Chen, H., Mao, J., Shen, J.: Optimal error estimates for SAV finite-element schemes for gradient flows. Numer. Math. 145(1), 167–196 (2020)

    MathSciNet  Google Scholar 

  53. Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)

    ADS  MathSciNet  Google Scholar 

  54. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018)

    MathSciNet  Google Scholar 

  55. Congreve, S., Houston, P., Perugia, I.: Adaptive refinement for \(hp\)-version Trefftz discontinuous Galerkin methods for the homogeneous Helmholtz problem. Adv. Comput. Math. 45, 361–393 (2019)

    MathSciNet  Google Scholar 

  56. Cui, J., Gao, F., Sun, Z., Zhu, P.: A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh. Numer. Methods Partial Differential Equ. 36, 601–616 (2020)

    MathSciNet  Google Scholar 

  57. Diehl, D.: Higher order schemes for simulation of compressible liquid-vapor flows with phase change. PhD thesis, Universität Freiburg (2007)

  58. Dong, Z.: Discontinuous Galerkin methods for the biharmonic problem on polygonal and polyhedral meshes. Int. J. Numer. Anal. Model. 16(5), 825–846 (2019)

    MathSciNet  Google Scholar 

  59. Dong, Z., Georgoulis, E.H.: Robust interior penalty discontinuous Galerkin methods. J. Sci. Comput. 92, 57 (2022)

    MathSciNet  Google Scholar 

  60. Dong, Z., Georgoulis, E.H., Kappas, T.: GPU-accelerated discontinuous Galerkin methods on polygonal and polyhedral meshes. SIAM J. Sci. Comput. 43(4), C312–C334 (2021)

    Google Scholar 

  61. Dong, Z., Georgoulis, E.H., Pryer, T.: Recovered finite element methods on polygonal and polyhedral meshes. ESAIM: M2AN, 54(4), 1309–1337 (2020)

  62. Dong, Z., Mascotto, L.: hp-Optimal interior penalty discontinuous Galerkin methods for the biharmonic problem. (2022). arXiv: 2212.03735v1

  63. Dong, Z., Mascotto, L., Sutton, O.: Discontinuous Galerkin methods for mass transfer through semipermeable membranes. SIAM J. Numer. Anal. 59(3), 1273–1298 (2021)

    MathSciNet  Google Scholar 

  64. Esedoḡlu, S., Tsai, Y.: Threshold dynamics for the piecewise constant Mumford-Shah functional. J. Comput. Phys. 211(1), 367–384 (2006)

    ADS  MathSciNet  Google Scholar 

  65. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    MathSciNet  Google Scholar 

  66. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems, Unpublished. (1998). http://www.math.utah.edu/eyre/research/methods/stable.ps

  67. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76(258), 539–571 (2007)

    ADS  MathSciNet  Google Scholar 

  68. Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp. 76(259), 1093–1117 (2007)

    ADS  MathSciNet  Google Scholar 

  69. Feng, X., Li, Y.: Analysis of interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35(4), 1622–1651 (2015)

    MathSciNet  Google Scholar 

  70. Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    MathSciNet  Google Scholar 

  71. Feng, X., Song, H., Tang, T., Yang, J.: Nonlinearly stable implicit-explicit methods for the Allen-Cahn equation. Inverse Probl. Image 7, 679–695 (2013)

    Google Scholar 

  72. Feng, X., Wu, H.: A posteriori error estimates and an adaptive finite element algorithm for the Allen-Cahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005)

    MathSciNet  Google Scholar 

  73. Ferro, N., Perotto, S., Cangiani, A.: An anisotropic recovery-based error estimator for adaptive discontinuous Galerkin methods. J. Sci. Comput. 90, 45 (2022)

    MathSciNet  Google Scholar 

  74. Fournier, D., Herbin, R., Tellier, R.: Discontinuous Galerkin discretization and hp-refinement for the resolution of the neutron transport equation. SIAM J. Sci. Comput. 35(2), A936–A956 (2013)

    MathSciNet  Google Scholar 

  75. Frank, F., Liu, C., Alpak, F.O., Berg, S., Riviére, B.: Direct numerical simulation of flow on pore-scale images using the phase-field method. SPE Journal 23(5), 1833–1850 (2018)

    CAS  Google Scholar 

  76. Frank, F., Liu, C., Alpak, F.O., Riviére, B.: A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Comput. Geosci. 22(2), 543–563 (2018)

    MathSciNet  Google Scholar 

  77. Frank, F., Liu, C., Scanziani, A., Alpak, F.O., Riviére, B.: An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods. J. Colloid Interf. Sci. 523, 282–291 (2018)

    ADS  CAS  Google Scholar 

  78. Fu, G.S.: A divergence-free HDG scheme for the Cahn-Hilliard phase-field model for two-phase incompressible flow. J. Comput. Phys. 419, 109671 (2020)

    MathSciNet  Google Scholar 

  79. Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)

    MathSciNet  Google Scholar 

  80. Gao, Y., He, X., Nie, Y.: Second-order, fully decoupled, linearized, and unconditionally stable scalar auxiliary variable schemes for Cahn-Hilliard-Darcy system. Numer. Methods Partial Differential Equ. pages 1–26 (2021)

  81. Gao, Y., Li, R., Mei, L., Lin, Y.: A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system. Appl. Numer. Math. 157, 338–355 (2020)

    MathSciNet  Google Scholar 

  82. Gräser, C., Kornhuber, R., Sack, U.: Time discretization of anisotropic Allen-Cahn equations. IMA J. Numer. Anal. 33(4), 1226–1244 (2013)

    MathSciNet  Google Scholar 

  83. Guo, R., Ji, L., Xu, Y.: High order local discontinuous Galerkin methods for the Allen-Cahn equation: analysis and simulation. J. Comput. Math. 34, 135–158 (2016)

    MathSciNet  Google Scholar 

  84. Guo, R., Xu, Y.: Efficient, accurate and energy stable discontinuous Galerkin methods for phase field models of two-phase incompressible flows. Commun. Comput. Phys. 26(4), 1224–1248 (2019)

    MathSciNet  Google Scholar 

  85. Hall, E., Houstion, P., Murphy, S.: hp-Adaptive discontinuous Galerkin methods for neutron transport criticality problems. SIAM J. Sci. Comput. 39(5), B916–B942 (2017)

    MathSciNet  Google Scholar 

  86. Hintermüller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. J. Comput. Phys. 235, 810–827 (2013)

    ADS  MathSciNet  Google Scholar 

  87. Hou, T.L., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72(3), 1214–1231 (2017)

    MathSciNet  Google Scholar 

  88. Houston, P., Wihler, T.P.: An \(hp\)-adaptive newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems. Math. Comput. 87(134), 2641–2674 (2018)

    MathSciNet  Google Scholar 

  89. Huang, F., Shen, J., Yang, Z.: A highly efficient and accurate new SAV approach for gradient flows. SIAM J. Sci. Comput. 42(4), A2514–A2536 (2020)

    Google Scholar 

  90. Jaśkowiec, J., Pluciński, P., Stankiewicz, A.: Discontinuous Galerkin method with arbitrary polygonal finite elements. Finite Elem. Anal. Des. 120, 1–17 (2016)

    MathSciNet  Google Scholar 

  91. Karasözen, B., Filibeliŏglu, A.S., Uzunca, M., Yücel, H.: Energy stable discontinuous Galerkin finite element method for the Allen-Cahn equation. Int. J. Comput. Methods 15(3), 1850013 (2018)

    MathSciNet  Google Scholar 

  92. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 660–2685 (1999)

    MathSciNet  Google Scholar 

  93. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys 12(3), 613–661 (2012)

    MathSciNet  Google Scholar 

  94. Li, H., Song, Z., Hu, J.: Numerical analysis of a second-order IPDGFE method for the Allen-Cahn equation and the curvature-driven geometric flow. Comput. Math. Appl. 86, 49–62 (2021)

    MathSciNet  Google Scholar 

  95. Li, R., Gao, Y., Chen, J., Zhang, L., He, X., Chen, Z.: Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Adv. Comput. Math. 46, 25 (2020)

    MathSciNet  Google Scholar 

  96. Li, R., Ming, P., Sun, Z., Yang, Z.: An arbitrary-order discontinuous Galerkin method with one unknown per element. J. Sci. Comput. 80, 268–288 (2019)

    MathSciNet  Google Scholar 

  97. Li, X., Shen, J.: Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 46, 48 (2020)

    MathSciNet  Google Scholar 

  98. Li, X., Shen, J., Rui, H.: Stability and error analysis of a second-order SAV scheme with block-centered finite differences for gradient flows. Math. Comp. 88(319), 2047–2068 (2019)

    MathSciNet  Google Scholar 

  99. Li, Y., Kim, J.: Multiphase image segmentation using a phase-field model. Comput. Math. Appl. 62, 737–745 (2011)

    MathSciNet  Google Scholar 

  100. Li, Y., Kim, J.: An unconditionally stable hybrid method for image segmentation. Appl. Numer. Math. 82, 32–43 (2014)

    MathSciNet  Google Scholar 

  101. Liao, H., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020)

    MathSciNet  Google Scholar 

  102. Lie, J., Lysaker, M., Tai, X.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process 15(5), 1171–1181 (2006)

    ADS  PubMed  Google Scholar 

  103. Lin, P., Liu, C., Zhang, H.: An energy law preserving \(C^0\) finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007)

    ADS  MathSciNet  Google Scholar 

  104. Liu, C., Frank, F., Riviére, B.: Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn-Hilliard equation. Numer. Methods Partial Differential Equ. 35, 1509–1537 (2019)

    MathSciNet  CAS  Google Scholar 

  105. Liu, C., Frank, F., Thiele, C., Alpak, F.O., Berg, S., Chapman, W., Riviére, B.: An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media. J. Comput. Phys. 400, 108948 (2020)

    MathSciNet  CAS  Google Scholar 

  106. Liu, C., Riviére, B.: A priori error analysis of a discontinuous Galerkin method for Cahn-Hilliard-Navier-Stokes equations. CSIAM Trans. Appl. Math. 1(1), 104–141 (2020)

    Google Scholar 

  107. Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci. 38, 4564–4575 (2015)

    ADS  MathSciNet  Google Scholar 

  108. Liu, H., Yin, P.: Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. J. Comput. Appl. Math. 390, 113375 (2021)

    MathSciNet  Google Scholar 

  109. Morel, J.M., Solimini, S.: Variational methods in image segmentation. Birkhauser (1995)

  110. Mu, L., Wang, J., Wang, Y., Ye, X.: Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes. J. Comput. Appl. Math. 255, 432–440 (2014)

    MathSciNet  Google Scholar 

  111. Mu, L., Wang, X., Wang, Y.: Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization. Numer. Methods Partial Differential Equ. 31(1), 308–325 (2015)

    MathSciNet  Google Scholar 

  112. Panicker, N., Passalacqua, A., Fox, R.O.: On the hyperbolicity of the two-fluid model for gas-liquid bubbly flows. Appl. Math. Model. 57, 432–447 (2018)

    MathSciNet  Google Scholar 

  113. Pigeonneau, F., Hachem, E., Saramito, P.: Discontinuous Galerkin finite element method applied to the coupled unsteady Stokes/Cahn-Hilliard equations. Int. J. Numer. Meth. Fluids 90, 267–295 (2019)

    MathSciNet  Google Scholar 

  114. Qian, Y., Yang, Z., Wang, F., Dong, S.: gPAV-based unconditionally energy-stable schemes for the Cahn-Hilliard equation: stability and error analysis. Comput. Methods Appl. Mech. Eng. 372, 113444 (2002)

    ADS  MathSciNet  Google Scholar 

  115. Rayleigh, L.: On the theory of surface forces II. Compressible fluids. Philos. Mag. 33(201), 209–220 (1892)

    Google Scholar 

  116. Riviére, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (2008)

  117. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Comm. Math. Sci. 14, 1517–1534 (2016)

    MathSciNet  Google Scholar 

  118. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    MathSciNet  Google Scholar 

  119. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 352, 407–417 (2018)

    ADS  MathSciNet  Google Scholar 

  120. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Review 61(3), 474–506 (2019)

    MathSciNet  Google Scholar 

  121. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A 28, 1669–1691 (2010)

    MathSciNet  Google Scholar 

  122. Stoll, M., Yücel, H.: Symmetric interior penalty Galerkin method for fractional-in-space phase-field equations. AIMS Math. 3(1), 66–95 (2018)

    Google Scholar 

  123. Stoter, S., Müller, P., Cicalese, L., Tuveri, M., Schillinger, D., Hughes, T.: A diffuse interface method for the Navier-Stokes/Darcy equations: perfusion profile for a patient-specific human liver based on MRI scans. Comput. Methods Appl. Mech. Engrg. 321, 70–102 (2017)

    ADS  MathSciNet  Google Scholar 

  124. Talischi, C., Paulino, G., Pereira, A., Menezes, I.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    MathSciNet  Google Scholar 

  125. Tang, T., Qiao, Z.: Efficient numerical methods for phase-field equations. Sci. Sin. Math. 50, 775–794 (2020)

    Google Scholar 

  126. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 451–461 (2016)

    MathSciNet  Google Scholar 

  127. Tian, L., Guo, H., Jia, R., Yang, Y.: An h-adaptive local discontinuous Galerkin method for simulating wormhole propagation with Darcy-Forcheiner model. J. Sci. Comput. 82, 43 (2020)

    MathSciNet  Google Scholar 

  128. Tian, L., Xu, Y., Kuerten, J., van der Vegt, J.: An \(h\)-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations. J. Comput. Phys. 319, 242–265 (2016)

    ADS  MathSciNet  CAS  Google Scholar 

  129. Uzunca, M., Sariaydin-Filibelioğlu, A.: Adaptive discontinuous Galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization 11(2), 269–281 (2021)

    MathSciNet  Google Scholar 

  130. van der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous density variation. J. Stat. Phys. 20, 197–244 (1893)

    Google Scholar 

  131. Wu, T., Yang, Y., Pang, Z.: A modified fixed-point iterative algorithm for image restoration using fourth-order PDE model. Appl. Numer. Math. 62(2), 79–90 (2012)

    MathSciNet  Google Scholar 

  132. Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)

    ADS  MathSciNet  Google Scholar 

  133. Xia, Y., Xu, Y., Shu, C.W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)

    MathSciNet  Google Scholar 

  134. Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Engrg. 345, 826–853 (2019)

    ADS  MathSciNet  Google Scholar 

  135. Xu, Z., Yang, X., Zhang, H., Xie, Z.: Efficent and linear schemes for anisotropic Cahn-Hilliard equations using the stabilized invariant energy quadratization (S-IEQ) approach. Comput. Phys. Commun. 238, 36–49 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  136. Yan, F., Xu, Y.: Stability analysis and error estimates of local discontinuous Galerkin method with semi-implicit spectral deferred correction time-marching for the Allen-Cahn equation. J. Comput. Appl. Math. 376, 112857 (2020)

    MathSciNet  Google Scholar 

  137. Yang, J., Mao, S., He, X., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Eng. 356, 435–464 (2019)

    ADS  MathSciNet  Google Scholar 

  138. Yang, X.: Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11(4), 1057–1070 (2009)

    MathSciNet  Google Scholar 

  139. Yang, X., Zhang, G.D.: Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential. J. Sci. Comput. 82, 55 (2020)

    MathSciNet  Google Scholar 

  140. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    ADS  MathSciNet  Google Scholar 

  141. Yang, X., Zhao, J., Wang, Q.: On linear and unconditionally energy stable algorithms for variable mobility Cahn-Hilliard type equation with logarithmic Flory-Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2019)

    MathSciNet  Google Scholar 

  142. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Mod. Meth. Appl. S. 27(11), 1993–2030 (2017)

    MathSciNet  Google Scholar 

  143. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, (109121) (2020)

  144. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15(4), 915–936 (2003)

    CAS  PubMed  Google Scholar 

  145. Zhang, F., Xu, Y., Chen, F., Guo, R.: Interior penalty discontinuous Galerkin based isogeometric analysis for Allen-Cahn equations on surfaces. Commun. Comput. Phys. 18, 1380–1416 (2015)

    MathSciNet  Google Scholar 

  146. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110(3), 279–300 (2017)

    MathSciNet  Google Scholar 

  147. Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Decoupled, energy stable schemes for a phase-field surfactant model. Commun. Comput. Phys. 233, 67–77 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  148. Zonca, S., Antonietti, P.F., Vergara, C.: A polygonal discontinuous Galerkin formulation for contact mechanics in fluid-structure interaction problems. Commun. Comput. Phys. 30, 1–33 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for carefully critiquing the manuscript. With their suggestions, we were able to better convey our arguments and present our results in a clearer manner.

Funding

Rui Li is partially supported by the National Natural Science Foundation of China (Nos. 11901372, 11931013, 12171296, 12071270), the Young Talent fund of University Association for Science and Technology in Shaanxi (No. 20200504), the Natural Science Foundation of Shaanxi Province (No. 2020JQ-403), the Fundamental Research Fund for the Central Universities of China (Nos. GK202103004, GK201901008), and the Sinopec Key Laboratory of Geophysics; Yali Gao is partially supported by the National Natural Science Foundation of China (No. 11901461), China Postdoctoral Science Foundation (No. 2020M673464), and Guangdong Basic and Applied Basic Research Foundation (2023A1515010697); Zhangxin Chen is financially supported by Foundation CMG.

Author information

Authors and Affiliations

Authors

Contributions

Rui Li, Yali Gao, and Zhangxin Chen contributed equally to this work.

Corresponding author

Correspondence to Yali Gao.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Gao, Y. & Chen, Z. Adaptive discontinuous Galerkin finite element methods for the Allen-Cahn equation on polygonal meshes. Numer Algor 95, 1981–2014 (2024). https://doi.org/10.1007/s11075-023-01635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01635-5

Keywords

Navigation