Skip to main content
Log in

Runge–Kutta pairs of orders 9(8) for use in quadruple precision computations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Runge–Kutta embedded pairs of high algebraic order are frequently utilized when strict tolerances are required. When creating such pairings of orders nine and eight for use in double precision arithmetic, numerous conditions are often satisfied. First and foremost, we strive to keep the coefficients’ magnitudes small to prevent accuracy loss. We may, however, allow greater coefficients when working with quadruple precision. Then, we may build pairs of orders 9 and 8 with significantly smaller truncation errors. In this paper, a novel pair is generated that, as predicted, outperforms state-of-the-art pairs of the same orders in a collection of important problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The coefficients of the new Runge–Kutta pair can be retrieved from http://users.uoa.gr/~tsitourasc/t98.m

Code Availability

The Mathematica package reported in section 2 can be retrieved from http://users.uoa.gr/~tsitourasc/t98.m

An alternative Mathematica module can be found in http://users.uoa.gr/~tsitourasc/rk98.m

References

  1. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MathSciNet  Google Scholar 

  2. Butcher, J.C.: On Runge-Kutta processes of high order. In: J. Austral. Math. Soc. 4179–194 (1964)

  3. Butcher, J.C.: Numerical methods for ordinary differential equations. Wiley, 3rd ed., Chichester, 2016

  4. Cassity, C.R.: The complete solution of the fifth order Runge-Kutta equations. SIAM J. Numer. Anal. 6, 432–436 (1969)

    Article  MathSciNet  Google Scholar 

  5. Famelis, I.T., Papakostas, S.N., Tsitouras, Ch.: Symbolic derivation of Runge-Kutta order conditions. J. Symbolic Comput. 37, 311–327 (2004)

    Article  MathSciNet  Google Scholar 

  6. Fehlberg, E.: Classical fifth, sixth, seventh, and eighth order Runge-Kutta formulas with stepsize control, TRR-287, NASA, (1968)

  7. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems. Springer, Berlin (1993)

    Google Scholar 

  8. Lefever, R., Nicolis, G.: Chemical Instabilities and sustained oscillations. J. Theor. Biol. 30, 2670–284 (1971)

    Article  Google Scholar 

  9. MATLAB version R2019b, The Mathworks, Inc., Natick, MA

  10. NDSolve: Mathematica function, details in https://reference.wolfram.com/language/ref/NDSolve.html?q=NDSolve

  11. “ExplicitRungeKutta” for NDSolve, https://reference.wolfram.com/language/tutorial/NDSolveExplicitRungeKutta.html

  12. ode89, Matlab function, https://www.mathworks.com/help/matlab/ref/ode89.html?s_tid=doc_ta

  13. Curiosity of low-order explicit Runge-Kutta methods: Oliver, J.A. Math. Comput. 29, 1032–1036 (1975)

  14. Papakostas, S.N., Tsitouras, Ch., Papageorgiou, G.A.: General family of explicit Runge-Kutta pairs of orders 6(5). SIAM J. Numer. Anal. 33, 917–936 (1996)

    Article  MathSciNet  Google Scholar 

  15. Sofroniou, M., Knapp, R.: Advanced numerical differential equation solving in Mathematica. In: Wolfram Mathematica Tutorial Collection. Wolfram Research, Champaign (2008)

  16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  17. Storn, R., Price, K., Neumaier, A., Zandt, J.V.: DeMat, Available online: https://github.com/mikeagn/DeMatDEnrand (accessed on 25 March 2022)

  18. Tsitouras, Ch.: A tenth order symplectic Runge-Kutta and Nyström method. Cele. Mech. Dynam. Astron. 74, 223–230 (1999)

    Article  Google Scholar 

  19. Tsitouras, Ch.: Optimized explicit Runge-Kutta pairs of orders 9(8). Appl. Numer. Math. 38, 123–134 (2001)

    Article  MathSciNet  Google Scholar 

  20. Tsitouras, Ch.: Explicit Runge-Kutta methods for starting integration of Lane-Emden problem. Appl. Math. Comput. 354, 353–364 (2019)

    MathSciNet  Google Scholar 

  21. Tsitouras, Ch., Papageorgiou, G.: Runge-Kutta interpolants based on values from two successive integration steps. Computing 43, 255–266 (1990)

    Article  MathSciNet  Google Scholar 

  22. Tsitouras, Ch., Papakostas, S.N.: Cheap error estimation for Runge-Kutta methods. SIAM J. Sci. Comput. 20, 2067–2088 (1999)

    Article  MathSciNet  Google Scholar 

  23. Tsitouras, Ch., Simos, T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. & Comput. 131, 201–211 (2002)

  24. Verner, J.H.: Explicit Runge-Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal. 15, 772–790 (1978)

    Article  MathSciNet  Google Scholar 

  25. Verner, J.H.: A contrast of some Runge-Kutta formula pairs. SIAM J. Numer. Anal. 27, 1332–1344 (1990)

    Article  MathSciNet  Google Scholar 

  26. Verner, J.H.: Some Runge-Kutta formula pairs. SIAM J. Numer. Anal. 28, 496–511 (1991)

    Article  MathSciNet  Google Scholar 

  27. Verner, J.H.: Numerically optimal Runge-Kutta pairs with interpolants. Numer. Algor. 53, 383–396 (2010)

    Article  MathSciNet  Google Scholar 

  28. Verner, J.H.: https://www.sfu.ca/~jverner/RKV98.IIa.Robust.000000351.081209.FLOAT6040OnWeb

  29. Wolfram Research, Inc., Mathematica, Version 11.3.0, Champaign, IL (2018)

Download references

Funding

The research was supported by a Mega Grant from the Government of the Russian Federation within the framework of the federal project No. 075-15-2021-584.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally.

Corresponding author

Correspondence to Theodore E. Simos.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalnogov, V.N., Fedorov, R.V., Karpukhina, T.V. et al. Runge–Kutta pairs of orders 9(8) for use in quadruple precision computations. Numer Algor 95, 1905–1919 (2024). https://doi.org/10.1007/s11075-023-01632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01632-8

Keywords

Mathematics Subject Classification (2010)

Navigation