Skip to main content
Log in

Strong convergence and extinction of positivity preserving explicit scheme for the stochastic SIS epidemic model

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper aims to establish a novel explicit method for the stochastic SIS epidemic model, which can preserve the bounded positive domain and asymptotic properties. The proposed new method is based on combining a logarithmic transformation with a truncated Euler-Maruyama method, and it has the first-order rate of convergence for the pth-moment with \(p>0\). Moreover, without additional restriction conditions except those necessary to guarantee the extinction of the exact solution, the approximation of the extinction is achieved for the stochastic SIS model whose coefficients violate the global monotonicity condition. Some numerical experiments are given to illustrate the theoretical results and testify to the efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte. Carlo. Methods. Appl. 11(4), 355–384 (2005). https://doi.org/10.1163/156939605777438569

    Article  MathSciNet  Google Scholar 

  2. Anderson, R., May, R.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York (1992)

    Google Scholar 

  3. Brauer, F.: Mathematical epidemiology: past, present, and future. Infect Dis Model 2(2), 113–127 (2017). https://doi.org/10.1016/j.idm.2017.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978). https://doi.org/10.1016/0025-5564(78)90006-8

    Article  MathSciNet  Google Scholar 

  5. Chen, L., Gan, S., Wang, X.: First order strong convergence of an explicit scheme for the stochastic SIS epidemic model. J. Comput. Appl. Math. 392:Paper No. 113482, 16 (2021). https://doi.org/10.1016/j.cam.2021.113482

  6. Gray, A., Greenhalgh, D., Hu, L., et al.: A stochastic differential equation SIS epidemic model. SIAM. J. Appl. Math. 71(3), 876–902 (2011). https://doi.org/10.1137/10081856X

    Article  MathSciNet  Google Scholar 

  7. Gray, A., Greenhalgh, D., Mao, X., et al.: The SIS epidemic model with Markovian switching. J. Math. Anal. Appl. 394(2), 496–516 (2012). https://doi.org/10.1016/j.jmaa.2012.05.029

    Article  MathSciNet  Google Scholar 

  8. Hethcote, H.W., Yorke, J.A.: Gonorrhea Transmission Dynamics and Control. Springer-Verlag, Berlin (1984)

    Book  Google Scholar 

  9. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer. Math. Soc. 236(1112), v+99 (2015). https://doi.org/10.1090/memo/1112

  10. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011). https://doi.org/10.1098/rspa.2010.0348

    Article  ADS  MathSciNet  Google Scholar 

  11. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012). https://doi.org/10.1214/11-AAP803

    Article  MathSciNet  Google Scholar 

  12. Hutzenthaler, M., Jentzen, A., Wang, X.: Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations. Math. Comp. 87(311), 1353–1413 (2018). https://doi.org/10.1090/mcom/3146

    Article  MathSciNet  Google Scholar 

  13. Jing, X., Liu, G., Jin, Z.: Stochastic dynamics of an SIS epidemic on networks. J. Math. Biol. 84(50), 1–26 (2022). https://doi.org/10.1007/s00285-022-01754-y

    Article  ADS  MathSciNet  Google Scholar 

  14. Kermack, W., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A. 115(772), 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

    Article  ADS  Google Scholar 

  15. Li, X., Yang, H.: Explicit numerical approximation for logistic models with regime switching in finite and infinite horizons. 1–62 (2021). arXiv:2106.03540

  16. Li, X., Ma, Q., Yang, H., et al.: The numerical invariant measure of stochastic differential equations with Markovian switching. SIAM. J. Numer. Anal. 56(3), 1435–1455 (2018). https://doi.org/10.1137/17M1143927

    Article  MathSciNet  Google Scholar 

  17. Li, X., Mao, X., Yin, G.: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in \(p\)th moment and stability. IMA J Numer Anal 39(2), 847–892 (2019). https://doi.org/10.1093/imanum/dry015

    Article  MathSciNet  Google Scholar 

  18. Li, X., Mao, X., Yang, H.: Strong convergence and asymptotic stability of explicit numerical schemes for nonlinear stochastic differential equations. Math. Comp. 90(332), 2827–2872 (2021). https://doi.org/10.1090/mcom/3661

    Article  MathSciNet  Google Scholar 

  19. Liu, W., Mao, X.: Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differential equations. Appl. Math. Comput. 223, 389–400 (2013). https://doi.org/10.1016/j.amc.2013.08.023

    Article  MathSciNet  Google Scholar 

  20. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood Publishing Limited, Cambridge (2008)

    Book  Google Scholar 

  21. Mao, X.: The truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290, 370–384 (2015). https://doi.org/10.1016/j.cam.2015.06.002

    Article  MathSciNet  Google Scholar 

  22. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2013). https://doi.org/10.1016/j.cam.2012.08.015

    Article  MathSciNet  Google Scholar 

  23. Mao, X., Wei, F., Wiriyakraikul, T.: Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model. J. Comput. Appl. Math. 394:Paper No. 113566, 17 (2021). https://doi.org/10.1016/j.cam.2021.113566

  24. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128(1), 103–136 (2014). https://doi.org/10.1007/s00211-014-0606-4

    Article  MathSciNet  Google Scholar 

  25. Sabanis, S.: A note on tamed Euler approximations. Electron Commun Probab 18:no. 47, 10 (2013). https://doi.org/10.1214/ECP.v18-2824

  26. Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016). https://doi.org/10.1214/15-AAP1140

    Article  MathSciNet  Google Scholar 

  27. Shulgin, B., Stone, L., Agur, Z.: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60(6), 1123–1148 (1998). https://doi.org/10.1016/S0092-8240(98)90005-2

    Article  CAS  PubMed  Google Scholar 

  28. Szpruch, L., Mao, X., Higham, D.J., et al.: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT. 51(2), 405–425 (2011). https://doi.org/10.1007/s10543-010-0288-y

    Article  MathSciNet  Google Scholar 

  29. Szpruch Lu, Zhāng X.: V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs. Math. Comp. 87(310), 755–783 (2018). https://doi.org/10.1090/mcom/3219

  30. Tran, K., Yin, G.: Optimal control and numerical methods for hybrid stochastic SIS models. Nonlinear. Anal. Hybrid. Syst. 41:Paper No. 101051, 16 (2021). https://doi.org/10.1016/j.nahs.2021.101051

  31. Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM. J. Numer. Anal. 51(6), 3135–3162 (2013). https://doi.org/10.1137/120902318

    Article  MathSciNet  Google Scholar 

  32. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Difference. Equ. Appl. 19(3), 466–490 (2013). https://doi.org/10.1080/10236198.2012.656617

    Article  MathSciNet  Google Scholar 

  33. Yang, H., Huang, J.: First order strong convergence of positivity preserving logarithmic Euler-Maruyama method for the stochastic SIS epidemic model. Appl. Math. Lett. 121:Paper No. 107451, 7 (2021). https://doi.org/10.1016/j.aml.2021.107451

  34. Yang, H., Li, X.: Explicit approximations for nonlinear switching diffusion systems in finite and infinite horizons. J. Differential. Equations. 265(7), 2921–2967 (2018). https://doi.org/10.1016/j.jde.2018.04.052

    Article  ADS  MathSciNet  Google Scholar 

  35. Yi, Y., Hu, Y., Zhao, J.: Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations. Commun. Nonlinear. Sci. Numer. Simul. 101:Paper No. 105895, 21 (2021). https://doi.org/10.1016/j.cnsns.2021.105895

Download references

Acknowledgements

The authors thank the associated editor and anonymous reviewers for the helpful comments and suggestions.

Funding

The research of Hongfu Yang was supported by the Natural Science Foundation of Guangxi Province (Nos. 2023GXNSFFA026001, 2023GXNSFAA026246, 2021GXNSFBA196080, Guike AD21220062), the National Natural Science Foundation of China (Nos. 11971096, 12101144, 62241303), the High-level Talent Project of Guangxi Normal University (2022TD003), the Guangxi Basic Ability Promotion Project for Young and Middle-aged Teachers (2023KY0067), and the Fundamental Research Funds for the Central Universities. The research of Jianhua Huang was supported by the National Natural Science Foundation of China (No. 12031020).

Author information

Authors and Affiliations

Authors

Contributions

Hongfu Yang: methodology, formal analysis, writing—original draft, writing—review and editing, software, supervision, funding acquisition. Jianhua Huang: methodology, formal analysis, writing—original draft, writing—review and editing, software, supervision, funding acquisition.

Corresponding authors

Correspondence to Hongfu Yang or Jianhua Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Huang, J. Strong convergence and extinction of positivity preserving explicit scheme for the stochastic SIS epidemic model. Numer Algor 95, 1475–1502 (2024). https://doi.org/10.1007/s11075-023-01617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01617-7

Keywords

Navigation