Skip to main content
Log in

A stiff-cut splitting technique for stiff semi-linear systems of differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study a new splitting method for the semi-linear system of ordinary differential equation, where the linear part is stiff. Firstly, the stiff part is split into two parts. The first stiff part, that is called the stiff-cutter and expected to be easily inverted, is implicitly treated. The second stiff part and the remaining nonlinear part are explicitly treated. Therefore, such stiff-cut method can be fast implemented and save the CPU time. Theoretically, we rigorously prove that the proposed method is unconditionally stable and convergent, if the stiff-cutter is chosen to be well-matched in the stiff part. As an application, we apply our method to solve a spatial-fractional reaction-diffusion equation and give a way for how to choose a suitable stiff-cutter. Finally, numerical experiments are carried out to illustrate the accuracy and efficiency of the proposed stiff-cut method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of supporting data

The data of codes involved in this paper are available from the corresponding author on reasonable request.

References

  1. Akrivis, G.: Implicit-explicit multistep methods for nonlinear parabolic equations. Math. Comp. 82, 45–68 (2013)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)

    Article  MathSciNet  Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  4. Boscarino, S.: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)

    Article  MathSciNet  Google Scholar 

  5. Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, H., Sun, H.W.: A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations. J. Sci. Comput. 87, 30 (2021)

    Article  MathSciNet  Google Scholar 

  7. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 25, 193–205 (1997)

    Article  MathSciNet  Google Scholar 

  9. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  Google Scholar 

  10. Huang, X., Li, D., Sun, H.W., Zhang, F.: Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations. J. Sci. Comput. 92, 41 (2022)

    Article  MathSciNet  Google Scholar 

  11. Huang, X., Lin, X.L., Ng, M.K., Sun, H.W.: Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. Numer. Math. Theory Methods Appl. 15, 565–591 (2022)

    Article  MathSciNet  Google Scholar 

  12. Huang, X., Sun, H.W.: A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains. Appl. Numer. Math. 169, 289–302 (2021)

    Article  MathSciNet  Google Scholar 

  13. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kang, Y., Liao, H.L., Wang, J.: An energy stable linear BDF2 scheme with variable time-steps for the molecular beam epitaxial model without slope selection. Commun. Nonlinear Sci. Numer. Simul. 118, 107047 (2023)

    Article  MathSciNet  Google Scholar 

  15. Koto, T.: IMEX Runge-Kutta schemes for reaction-diffusion equations. J. Comput. Appl. Math. 215, 182–195 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lambert, J.D.: Computational methods in ordinary differential equations. John Wiley & Sons, London-New York-Sydney (1973)

    Google Scholar 

  17. Lambert, J.D.: Numerical methods for ordinary differential systems. John Wiley & Sons Ltd, Chichester (1991)

    Google Scholar 

  18. Li, Z., Liao, H.L.: Stability of variable-step BDF2 and BDF3 methods. SIAM J. Numer. Anal. 60, 2253–2272 (2022)

    Article  MathSciNet  Google Scholar 

  19. Lin, X.L., Huang, X., Ng, M.K., Sun, H.W.: A \(\tau \)-preconditioner for a non-symmetric linear system arising from multi-dimensional Riemann-Liouville fractional diffusion equation. Numer. Algorithms 92, 795–813 (2023)

    Article  MathSciNet  Google Scholar 

  20. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nie, Q., Wan, F.Y.M., Zhang, Y., Liu, X.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  22. Nie, Q., Zhang, Y., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Qin, H.H., Pang, H.K., Sun, H.W.: Sine transform based preconditioning techniques for space fractional diffusion equations. Numer. Linear Algebr. Appl. (2023). https://doi.org/10.1002/nla.2474

    Article  MathSciNet  Google Scholar 

  24. Rosales, R.R., Seibold, B., Shirokoff, D., Zhou, D.: Unconditional stability for multistep ImEx schemes: theory. SIAM J. Numer. Anal. 55, 2336–2360 (2017)

    Article  MathSciNet  Google Scholar 

  25. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT 47, 137–155 (2007)

    Article  MathSciNet  Google Scholar 

  26. Seibold, B., Shirokoff, D., Zhou, D.: Unconditional stability for multistep ImEx schemes: practice. J. Comput. Phys. 376, 295–321 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  28. Verwer, J.G., Sommeijer, B.P.: An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations. SIAM J. Sci. Comput. 25, 1824–1835 (2004)

    Article  MathSciNet  Google Scholar 

  29. Xiao, A., Zhang, G., Yi, X.: Two classes of implicit-explicit multistep methods for nonlinear stiff initial-value problems. Appl. Math. Comput. 247, 47–60 (2014)

    MathSciNet  Google Scholar 

  30. Zhang, L., Sun, H.W.: Numerical solution for multi-dimensional Riesz fractional nonlinear reaction-diffusion equation by exponential Runge-Kutta method. J. Appl. Math. Comput. 62, 449–472 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments which benefit this paper a lot. The second author (corresponding author) Hai-Wei Sun is supported by Science and Technology Development Fund of Macao SAR (Grant No. 0122/2020/A3) and MYRG2020-00224-FST from University of Macau.

Funding

Science and Technology Development Fund of Macao SAR (Grant No. 0122/2020/A3); MYRG2020-00224-FST from University of Macau.

Author information

Authors and Affiliations

Authors

Contributions

The two authors contributed equally.

Corresponding author

Correspondence to Hai-Wei Sun.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hai-Wei Sun contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Sun, HW. A stiff-cut splitting technique for stiff semi-linear systems of differential equations. Numer Algor 95, 1387–1412 (2024). https://doi.org/10.1007/s11075-023-01613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01613-x

Keywords

Mathematics Subject Classification (2010)

Navigation