Skip to main content
Log in

A family of gradient methods using Householder transformation with application to hypergraph partitioning

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a constraint preserving algorithm for the smallest Z-eigenpair of the compact Laplacian tensor of an even-uniform hypergraph, where Householder transform is employed and a family of modified conjugate directions with sufficient descent is determined. Besides, we prove that there exists a positive step size in the new constraint preserving update scheme such that the Wolfe conditions hold. Based on these properties, we prove the convergence of the new algorithm. Furthermore, we apply our algorithm to the hypergraph partitioning and image segmentation, and numerical results are reported to illustrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of supporting data

The authors confirm that all data generated or analyzed during this study are included in this paper.

References

  1. Abdollahi, F., Fatemi, M.: A modified conjugate gradient method for general convex functions. Numer Algor. 92, 1485–1502 (2023)

    MathSciNet  Google Scholar 

  2. Bu, C., Fan, Y., Zhou, J.: Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs. Front. Math. China. 11, 511–520 (2016)

    MathSciNet  Google Scholar 

  3. Bulò, S.R., Pelillo, M.: New bounds on the clique number of graphs based on spectral hypergraph theory. In: Stützle, T. (ed.) Learning and intelligent optimization, pp. 45–48. Springer Verlag, Berlin (2009)

    Google Scholar 

  4. Chang, J., Chen, Y., Qi, L.: Computing eigenvalues of large scale sparse tensors arising from a hypergraph. SIAM J. Sci. Comput. 38(6), A3618–A3643 (2016)

    MathSciNet  Google Scholar 

  5. Chang, J., Ding, W., Qi, L., Yan, H.: Computing the \(p\)-spectral radii of uniform hypergraphs with applications. J. Sci. Comput. 75, 1–25 (2018)

    MathSciNet  Google Scholar 

  6. Chang, J., Qi, L., Yan, H.: Hypergraph clustering using a new Laplacian tensor with applications in image processing. SIAM J. Imaging. Sci. 13(3), 1157–1178 (2020)

    MathSciNet  Google Scholar 

  7. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37, 290–319 (2016)

    MathSciNet  Google Scholar 

  8. Chen, Y., Qi, L., Wang, Q.: Computing extreme eigenvalues of large scale Hankel tensors. J. Sci. Comput. 68, 716–738 (2016)

    MathSciNet  Google Scholar 

  9. Chen, Y., Qi, L., Zhang, X.: The Fiedler vector of a Laplacian tensor for hypergraph partitioning. SIAM J. Sci. Comput. 39(6), A2508–A2537 (2017)

    MathSciNet  Google Scholar 

  10. Chen, Z., Qi, L.: Circulant tensors with applications to spectral hypergraph theory and stochastic process. J. Ind. Manag. Optim. 12, 1227–1247 (2016)

    MathSciNet  Google Scholar 

  11. Chung, F.: Spectral graph theory. AMS, Providence RI (1997)

    Google Scholar 

  12. Chung, F., Lu, L.: Complex graphs and networks. AMS, Providence, RI (2006)

    Google Scholar 

  13. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436(9), 3268–3292 (2012)

    MathSciNet  Google Scholar 

  14. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)

    MathSciNet  Google Scholar 

  15. Dai, Y.: New properties of a nonlinear conjugate gradient method. Numer. Math. 89, 83–98 (2001)

    MathSciNet  Google Scholar 

  16. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    MathSciNet  Google Scholar 

  17. Dai, Y., Yuan, Y.: Nonlinear conjugate gradient methods. Shanghai Science and Technology Press, Shanghai (2000)

    Google Scholar 

  18. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(\(R_1, R_2, \dots, R_N\)) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    MathSciNet  Google Scholar 

  19. Dorai, C., Jain, A.K.: Shape spectra based view grouping for free-form objects. In Proceedings of the International Conference on Image Processing, IEEE 3, 340–343 (1995)

    Google Scholar 

  20. Fan, Y., Khan, M.I., Tan, Y.: The largest H-eigenvalue and spectral radius of Laplacian tensor of non-odd-bipartite generalized power hypergraphs. Linear Algebra Appl. 504, 487–502 (2016)

    MathSciNet  Google Scholar 

  21. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)

    MathSciNet  Google Scholar 

  22. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Math. J. 25, 619–633 (1973)

    MathSciNet  Google Scholar 

  23. Fletcher, R.: Practical methods of optimization vol. 1: Unconstrained Optimization. John Wiley & Sons, New York (1987)

  24. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    MathSciNet  Google Scholar 

  25. Ghoshdastidar, D., Dukkipati, A.: A provable generalized tensor spectral method for uniform hypergraph partitioning. In Proceedings of the International Conference on Machine Learning 400–409 (2015)

  26. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2, 21–42 (1992)

    MathSciNet  Google Scholar 

  27. Govindu, V.M., Van Loan, C.F.: A tensor decomposition for geometric grouping and segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1, 1150–1157 (2005)

  28. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    MathSciNet  Google Scholar 

  29. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MathSciNet  Google Scholar 

  30. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier, New York (2011)

    Google Scholar 

  31. Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)

    MathSciNet  Google Scholar 

  32. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards Sect. 5(49), 409–436 (1952)

    MathSciNet  Google Scholar 

  33. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databases with noise. In Proceedings of KDD 58–65 (1998)

  34. Hu, S., Qi, L.: Algebraic connectivity of an even uniform hypergraph. J. Comb. Optim. 24, 564–579 (2012)

    MathSciNet  Google Scholar 

  35. Hu, S., Qi, L.: The Laplacian of a uniform hypergraph. J. Comb. Optim. 29(2), 331–366 (2015)

    MathSciNet  Google Scholar 

  36. Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. Data Min. Knowl. Discov. 3, 34–39 (1997)

    Google Scholar 

  37. Jiang, D., Wu, S., Chen, G., Ooi, B.C., Tan, K.-L., Xu, J.: epiC: an extensible and scalable system for processing Big Data. VLDB J. 25, 3–26 (2016)

    Google Scholar 

  38. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Google Scholar 

  39. Kang, S.H., Shafei, B., Steidl, G.: Supervised and transductive multi-class segmentation using \(p\)-Laplacians and RKHS methods. J. Vis. Commun. Image Represent. 25(5), 1136–1148 (2014)

    Google Scholar 

  40. Klamt, S., Haus, U.-U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput. Biol. 5(5), e1000385 (2009)

    MathSciNet  Google Scholar 

  41. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    MathSciNet  Google Scholar 

  42. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    MathSciNet  Google Scholar 

  43. Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35(4), 1563–1581 (2014)

    MathSciNet  Google Scholar 

  44. Li, G., Qi, L., Yu, G.: The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20(6), 1001–1029 (2013)

    MathSciNet  Google Scholar 

  45. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05) 1, 129–132 (2005)

  46. Liu, L., Storey, C.: Efficient generalized conjugate gradient algorithms, Part 1: Theory. J. Optim. Theory Appl. 69, 129–137 (1991)

    MathSciNet  Google Scholar 

  47. Ni, Q.: Optimization methods and programming. Science Press, Beijing (2009)

    Google Scholar 

  48. Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. J. Glob. Optim. 61, 627–641 (2015)

    MathSciNet  Google Scholar 

  49. Polak, E., Ribière, G.: Note sur la convergence de directions conjugées. Rev. Francaise Informat. Recherche Opertionelle, 3e Année 16, 35–43 (1969)

  50. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, 94–112 (1969)

    Google Scholar 

  51. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    MathSciNet  Google Scholar 

  52. Qi, L.: H\(^+\)-eigenvalues of Laplacian and signless Lapaclian tensors. Comm. Math. Sci. 12(6), 1045–1064 (2014)

    Google Scholar 

  53. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.-T.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Google Scholar 

  54. Xie, J., Chang, A.: A new type of Laplacian tensor and its Z-eigenvalues of an even uniform hypergraph. Int. J. Appl. Math. Stat. 31, 9–19 (2013)

    MathSciNet  Google Scholar 

  55. Xie, J., Qi, L.: The clique and coclique numbers’ bounds based on the H-eigenvalues of uniform hypergraphs. Int. J. Numer. Anal, Mod. 12(2), 318–327 (2015)

  56. Xie, J., Qi, L.: Spectral directed hypergraph theory via tensors. Linear Multilinear Algebra 64, 780–794 (2016)

    MathSciNet  Google Scholar 

  57. Yu, G., Yu, Z., Xu, Y., et al.: An adaptive gradient method for computing generalized tensor eigenpairs. Comput. Optim. Appl. 65, 781–797 (2016)

    MathSciNet  Google Scholar 

  58. Yuan, G., Meng, Z., Li, Y.: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory. Appl. 168, 129–152 (2016)

    MathSciNet  Google Scholar 

  59. Yuan, G., Wei, Z., Yang, Y.: The global convergence of the Polak-Ribière-Polyak conjugate gradient algorithm under inexact line search for nonconvex functions. J. Comput. Appl. Math. 362, 262–275 (2019)

    MathSciNet  Google Scholar 

  60. Yuan, G., Wang, X., Sheng, Z.: Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions. Numer Algor. 84, 935–956 (2020)

    MathSciNet  Google Scholar 

  61. Yuan, Y., Sun, W.: Optimization theory and methods. Science Press, Beijing (1999)

    Google Scholar 

  62. Zhang, X., Ni, Q., Ge, Z.: A convergent Newton algorithm for computing Z-eigenvalues of an almost nonnegative irreducible tensor. Optim. Method. Softw. 35(2), 377–393 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yannan Chen for his insightful discussions on hypergraph partitioning and image segmentation.

Funding

This paper was supported by Suqian Sci & Tech Program (Grant No. Z2020135 and K202112), the National Natural Science Foundation of China (Grant No. 11901118, 12001281 and 62073087), the Anhui Provincial Natural Science Foundation (Grant No. 2208085QA07), and the Youth Foundation of Anhui University of Technology (Grant No. QZ202114) and was sponsored by Qing Lan Project.

Author information

Authors and Affiliations

Authors

Contributions

The first author prepared the mathematica programs of the presented algorithms, all authors wrote the main manuscript text and prepared the tables and figures, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Zhou Sheng.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chang, J., Ge, Z. et al. A family of gradient methods using Householder transformation with application to hypergraph partitioning. Numer Algor 95, 897–927 (2024). https://doi.org/10.1007/s11075-023-01593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01593-y

Keywords

Navigation