Skip to main content
Log in

Alternated inertial algorithms for split feasibility problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce four novel relaxed CQ algorithms with alternating inertial for solving split feasibility problems in real Hilbert spaces. The proposed algorithms employ a new non-monotonic adaptive step size criterion and utilize two different step sizes in each iteration. The weak convergence of the iterative sequences generated by the proposed algorithms is established under some weak conditions. Moreover, the Fejér monotonicity of the even subsequence with respect to the solution set is recovered. Two applications in signal denoising and image deblurring are given to illustrate the computational efficiency of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author.

Notes

  1. Available on the website https://www.tau.ac.il/~becka/home

  2. Download from the website http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip

  3. Access via the website http://www.imm.dtu.dk/~pcha/HNO/HNO.zip

References

  1. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  2. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Problems 26, article no. 105018 (2010)

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  4. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  5. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  6. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  7. Gibali, A., Sabach, S., Voldman, S.: Non-convex split feasibility problems: models, algorithms and theory. Open J. Math. Optim. 1, article no. 1 (2020)

  8. Brooke, M., Censor, Y., Gibali, A.: Dynamic string-averaging CQ-methods for the split feasibility problem with percentage violation constraints arising in radiation therapy treatment planning. Int. Trans. Oper. Res. 30, 181–205 (2023)

    Article  MathSciNet  Google Scholar 

  9. Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities. Optim. Lett. 15, 2109–2126 (2021)

    Article  MathSciNet  Google Scholar 

  10. Shehu, Y., Dong, Q.L., Liu, L.L.: Global and linear convergence of alternated inertial methods for split feasibility problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 115, article no. 53 (2021)

  11. Dong, Q.L., Liu, L.L., Yao, Y.H.: Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem. J. Nonlinear Convex Anal. 23, 591–605 (2022)

    MathSciNet  Google Scholar 

  12. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Problems 20, 1261–1266 (2004)

  13. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Problems 21, 1655–1665 (2005)

    Article  MathSciNet  Google Scholar 

  14. Xu, H.K.: A variable Krasnosel’skiǐ-Mann algorithm and the multiple-set split feasibility problem. Inverse Problems 22, 2021–2034 (2006)

    Article  MathSciNet  Google Scholar 

  15. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Problems 28, article no. 085004 (2012)

  16. Reich, S., Tuyen, T.M.: A new approach to solving split equality problems in Hilbert spaces. Optimization 71, 4423–4445 (2022)

    Article  MathSciNet  Google Scholar 

  17. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Berlin (2017)

    Book  Google Scholar 

  18. Hendrickx, J.M., Olshevsky, A.: Matrix \(p\)-norms are NP-hard to approximate if \(p \ne 1,2, \infty \). SIAM J. Matrix Anal. Appl. 31, 2802–2812 (2010)

    Article  MathSciNet  Google Scholar 

  19. Zhang, W.X., Han, D.R., Li Z.: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse problems 25, article no. 115001 (2009)

  20. Dong, Q.L., Tang, Y.C., Cho, Y.J., Rassias, T.M: “Optimal" choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Global Optim. 71, 341–360 (2018)

  21. Gibali, A., Liu, L.W., Tang, Y.C.: Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 12, 817–830 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gibali, A., Mai, D.T., Vinh, N.T.: A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. J. Ind. Manag. Optim. 15, 963–984 (2019)

    Article  MathSciNet  Google Scholar 

  23. Sahu, D.R., Cho, Y.J., Dong, Q.L., Kashyap, M.R., Li, X.H.: Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer. Algorithms 87, 1075–1095 (2021)

    Article  MathSciNet  Google Scholar 

  24. Ma, X., Liu, H., Li, X.: Two optimization approaches for solving split variational inclusion problems with applications. J. Sci. Comput. 91, article no. 58 (2022)

  25. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. Math. Phys. 4, 1–17 (1964)

  26. Nesterov, Y.: A method for solving the convex programming problem with convergence rate \(O\left(1 / k^{2}\right)\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  27. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  28. Yang, J., Liu, H.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 80, 741–752 (2019)

    Article  MathSciNet  Google Scholar 

  29. Tan, B., Cho, S.Y.: Inertial extragradient algorithms with non-monotone stepsizes for pseudomonotone variational inequalities and applications. Comput. Appl. Math. 41, article no. 121 (2022)

  30. Mu, Z., Peng, Y.: A note on the inertial proximal point method. Stat. Optim. Inf. Comput. 3, 241–248 (2015)

    Article  MathSciNet  Google Scholar 

  31. Iutzeler, F., Malick, J.: On the proximal gradient algorithm with alternated inertia. J. Optim. Theory Appl. 176, 688–710 (2018)

    Article  MathSciNet  Google Scholar 

  32. Iutzeler, F., Hendrickx, J.M.: A generic online acceleration scheme for optimization algorithms via relaxation and inertia. Optim. Methods Softw. 34, 383–405 (2019)

    Article  MathSciNet  Google Scholar 

  33. Shehu, Y., Iyiola, O.S.: Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence. Appl. Numer. Math. 157, 315–337 (2020)

    Article  MathSciNet  Google Scholar 

  34. Shehu, Y., Dong, Q.L., Liu, L.L.: Fast alternated inertial projection algorithms for pseudo-monotone variational inequalities. J. Comput. Appl. Math. 415, article no. 114517 (2022)

  35. Beck, A.: First-Order Methods in Optimization. MOS-SIAM Series on Optimization, vol. 25. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2017)

  36. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  37. Osilike, M.O., Aniagbosor, S.C.: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. Math. Comput. Model. 32, 1181–1191 (2000)

    Article  MathSciNet  Google Scholar 

  38. Cai, X., Gu, G., He, B.S.: On the \(O(1/t)\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  Google Scholar 

  39. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody 12, 747–756 (1976)

    MathSciNet  Google Scholar 

  40. Beck, A., Guttmann-Beck, N.: FOM-a MATLAB toolbox of first-order methods for solving convex optimization problems. Optim. Methods Softw. 34, 172–193 (2019)

    Article  MathSciNet  Google Scholar 

  41. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  42. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the handling editor and the anonymous referee for careful reading and constructive comments, which improved the quality of the manuscript.

Funding

Bing Tan was supported by the China Scholarship Council (CSC No. 202106070094). Xianfu Wang was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions.

Corresponding author

Correspondence to Xianfu Wang.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Qin, X. & Wang, X. Alternated inertial algorithms for split feasibility problems. Numer Algor 95, 773–812 (2024). https://doi.org/10.1007/s11075-023-01589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01589-8

Keywords

Mathematics Subject Classification (2010)

Navigation