Skip to main content
Log in

The series expansions and blow-up time estimation for the solutions of convolution Volterra-Hammerstein integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The blow-up phenomenon may occur in nonlinear integral equations and differential equations, which has important significance for the simulation of some practical problems. This paper is devoted to predicting the blow-up time for convolution Volterra-Hammerstein integral equations using the series expansion of the solution about the origin. First, the finite-term series expansion for the solution about the origin is obtained via Picard iteration and symbolic computation, which has high accuracy near the origin. Second, the Padé approximation of the series expansion is made to extend the convergence region of the series. The blow-up time of the solution is estimated by calculating the smallest positive root of the denominator of the rational function. Third, an integral transform is performed to the series expansion to convert the branch point to a pole of order one at the blow-up time, so the predicted accuracy of the blow-up time is improved remarkably. Numerical examples illustrate that the proposed method is very efficient for estimating the blow-up time of Volterra integral equations and some kinds of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Allaei, S.S., Diogo, T., Rebelo, M.: Analytical and computational methods for a class of nonlinear singular integral equations. Appl. Numer. Math. 114, 2–17 (2017). https://doi.org/10.1016/j.apnum.2016.06.001

    Article  MathSciNet  Google Scholar 

  2. Cao, Y.Z., Herdman, T., Xu, Y.S.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003). https://doi.org/10.1137/S0036142901385593

    Article  MathSciNet  Google Scholar 

  3. Trivedi, V.K., Kumar, I.J.: On a Mellin transform technique for the asymptotic solution of a nonlinear Volterra integral equation. Proc. R. Soc. Lond. A 352, 339–349 (1977). https://doi.org/10.1098/rspa.1977.0003

    Article  MathSciNet  Google Scholar 

  4. Handelsman, R.A., Olmstead, W.E.: Asymptotic solution to a class of nonlinear Volterra integral equations. SIAM J. Appl. Math. 22, 373–384 (1972). https://doi.org/10.1137/0122035

    Article  MathSciNet  Google Scholar 

  5. Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20, 1106–1119 (1983). https://doi.org/10.1137/0720080

    Article  MathSciNet  Google Scholar 

  6. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Wang, T.K., Qin, M., Zhang, Z.Y.: The Puiseux expansion and numerical integration to nonlinear weakly singular Volterra integral equations of the second kind. J. Sci. Comput. 82, 64 (2020). https://doi.org/10.1007/s10915-020-01167-3

    Article  MathSciNet  Google Scholar 

  8. Wang, T.K., Qin, M., Lian, H.: The asymptotic approximations to linear weakly singular Volterra integral equations via Laplace transform. Numer. Algorithms 85, 683–711 (2020). https://doi.org/10.1007/s11075-019-00832-5

    Article  MathSciNet  Google Scholar 

  9. Calabrò, F., Capobianco, G.: Blowing up behavior for a class of nonlinear VIEs connected with parabolic PDEs. J. Comput. Appl. Math. 228, 580–588 (2009). https://doi.org/10.1016/j.cam.2008.03.026

    Article  MathSciNet  Google Scholar 

  10. Olmstead, W.E.: Ignition of a combustible half space. SIAM J. Appl. Math. 43, 1–15 (1983). https://doi.org/10.1137/0143001

    Article  MathSciNet  Google Scholar 

  11. Bandle, C., Brunner, H.: Blow-up in diffusion equations: a survey. J. Comput. Appl. Math. 97, 3–22 (1998). https://doi.org/10.1016/S0377-0427(98)00100-9

    Article  MathSciNet  Google Scholar 

  12. Cho, C.H.: On the computation for blow-up solutions of the nonlinear wave equation. Numer. Math. 138, 537–556 (2018). https://doi.org/10.1007/s00211-017-0919-1

    Article  MathSciNet  Google Scholar 

  13. Duan, J.S., Rach, R., Lin, S.M.: Analytic approximation of the blow-up time for nonlinear differential equations by the ADM-Padé technique. Math. Meth. Appl. Sci. 36, 1790–1804 (2013). https://doi.org/10.1002/mma.2725

    Article  Google Scholar 

  14. Ma, J.T.: Blow-up solutions of nonlinear Volterra integro-differential equations. Math. Comput. Model. 54, 2551–2559 (2011). https://doi.org/10.1016/j.mcm.2011.06.020

    Article  MathSciNet  Google Scholar 

  15. Song, H.M., Yang, Z.W., Xiao, Y.: Analysis of blow-up behavior of solutions to CVIEs. Comp. Appl. Math. 40, 136 (2021). https://doi.org/10.1007/s40314-021-01520-8

    Article  MathSciNet  Google Scholar 

  16. Wang, Q., Yang, Z.W., Zhao, C.C.: Numerical blow-up analysis of the explicit L1-scheme for fractional ordinary differential equations. Numer. Algorithms 89, 451–463 (2022). https://doi.org/10.1007/s11075-021-01121-w

    Article  MathSciNet  Google Scholar 

  17. Roberts, C.A.: Analysis of explosion for nonlinear Volterra equations. J. Comput. Appl. Math. 97, 153–166 (1998). https://doi.org/10.1016/S0377-0427(98)00108-3

    Article  MathSciNet  Google Scholar 

  18. Miller, R.K.: Nonlinear Volterra Integral Equations. W. A. Benjamin Inc, Menlo Park, California (1971)

    Google Scholar 

  19. Bushell, P.J., Okrasinski, W.: On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolution kernel. B. Lond. Math. Soc. 28, 59–65 (1996). https://doi.org/10.1112/blms/28.1.59

    Article  MathSciNet  Google Scholar 

  20. Brunner, H., Yang, Z.W.: Blow-up behavior of Hammerstein-type Volterra integral equations. J. Integral Equ. Appl. 24, 487–512 (2012). https://doi.org/10.1216/JIE-2012-24-4-487

    Article  MathSciNet  Google Scholar 

  21. Yang, Z.W., Brunner, H.: Blow-up behavior of collocation solutions to Hammerstein-type Volterra integral equations. SIAM J. Numer. Anal. 51, 2260–2282 (2013). https://doi.org/10.1137/12088238X

    Article  MathSciNet  Google Scholar 

  22. Mydlarczyk, W.: The blow-up solutions of integral equations. Colloq. Math. 79, 147–156 (1999). https://doi.org/10.4064/cm-79-1-147-156

    Article  MathSciNet  Google Scholar 

  23. Yang, Z.W., Tang, T., Zhang, J.W.: Blowup of Volterra integro-differential equations and applications to semi-linear Volterra diffusion equations. Numer. Math. Theor. Meth. Appl. 10, 737–759 (2017). https://doi.org/10.4208/nmtma.2016.0001

    Article  MathSciNet  Google Scholar 

  24. Li, Y.N., Zhang, Q.G.: Blow-up and global existence of solutions for a time fractional diffusion equation. Fract. Calc. Appl. Anal. 21, 1619–1640 (2019). https://doi.org/10.1515/fca-2018-0085

    Article  MathSciNet  Google Scholar 

  25. Tomasz, M., Wojciech, O.: Conditions for blow-up of solutions of some nonlinear Volterra integral equations. J. Comput. Appl. Math. 205, 744–750 (2007). https://doi.org/10.1016/j.cam.2006.02.054

    Article  MathSciNet  Google Scholar 

  26. Roberts, C.A.: Recent results on blow-up and quenching for nonlinear Volterra equations. J. Comput. Appl. Math. 205, 736–743 (2007). https://doi.org/10.1016/j.cam.2006.01.049

    Article  MathSciNet  Google Scholar 

  27. Cho, C.H.: On the computation of the numerical blow-up time. Japan J. Indust. Appl. Math. 30, 331–349 (2013). https://doi.org/10.1007/s13160-013-0101-9

    Article  MathSciNet  Google Scholar 

  28. Goriely, A., Hyde, C.: Finite-time blow-up in dynamical systems. Phys. Lett. A 250, 311–318 (1998). https://doi.org/10.1016/S0375-9601(98)00822-6

    Article  MathSciNet  Google Scholar 

  29. Nassif, N.R., Makhoul-Karam, N., Soukiassian, Y.: Computation of blowing-up solutions for second-order differential equations using re-scaling techniques. J. Comput. Appl. Math. 227, 185–195 (2009). https://doi.org/10.1016/j.cam.2008.07.020

    Article  MathSciNet  Google Scholar 

  30. Cho, C.H.: On the convergence of numerical blow-up time for a second order nonlinear ordinary differential equation. Appl. Math. Lett. 24, 49–54 (2011). https://doi.org/10.1016/j.aml.2010.08.011

    Article  MathSciNet  Google Scholar 

  31. Tomasz, M., Wojciech, O.: Blow-up time for solutions to some nonlinear Volterra integral equations. J. Math. Anal. Appl. 366, 372–384 (2010). https://doi.org/10.1016/j.jmaa.2010.01.030

    Article  MathSciNet  Google Scholar 

  32. Roberts, C.A., Lasseigne, D.G., Olmstead, W.E.: Volterra equations which model explosion in a diffusive medium. J. Integral Equ. Appl. 5, 531–546 (1993). https://doi.org/10.1216/jiea/1181075776

    Article  MathSciNet  Google Scholar 

  33. Roberts, C.A., Olmstead, W.E.: Growth rates for blow-up solutions of nonlinear Volterra equations. Q. Appl. Math. 54, 153–159 (1996). https://doi.org/10.1090/qam/1373844

    Article  MathSciNet  Google Scholar 

  34. Brezinski, C., Van Iseghem, J.: A taste of Padé approximation. Acta Numerica 4, 53–103 (1995). https://doi.org/10.1017/S096249290000252X

    Article  Google Scholar 

  35. Brunner, H.: Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  36. Mydlarczyk, W.: Coupled Volterra integral equations with blowing up solutions. J. Integral Equ. Appl. 30, 147–166 (2018). https://doi.org/10.1216/JIE-2018-30-1-147

    Article  MathSciNet  Google Scholar 

  37. Griffiths, D., Higham, D.J.: Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, London (2010)

    Book  Google Scholar 

  38. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  39. Abdalkhani, J.: Exact and approximate solutions of the Abel-Volterra equations. The Mathematica Journal 18 (2016). https://doi.org/10.3888/tmj.18-2

Download references

Acknowledgements

The authors are very grateful to Editors and Referees for their valuable suggestions, which improve the quality of the paper significantly.

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 11971241 and the Program for Innovative Research Team in Universities of Tianjin under Grant No. TD13-5078.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The manuscript was written by Yuxuan Wang and Tongke Wang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tongke Wang.

Ethics declarations

Human and animal ethics

Not applicable.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All of the material is owned by the authors, and no permissions are required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, T. & Lian, H. The series expansions and blow-up time estimation for the solutions of convolution Volterra-Hammerstein integral equations. Numer Algor 95, 637–663 (2024). https://doi.org/10.1007/s11075-023-01584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01584-z

Keywords

Mathematics Subject Classification (2010)

Navigation