Skip to main content
Log in

A second-order finite difference scheme for nonlinear tempered fractional integrodifferential equations in three dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we provide a numerical solution for the nonlinear tempered fractional integrodifferential equation in three dimensions. We use the trapezoidal convolution rule with backward differences (BDF2) for temporal discretization, and develop an alternating direction implicit difference scheme for spatial discretization. A novel fast approximation is applied to tackle the nonlinear term. The stability and convergence analysis of the numerical scheme are analyzed. Furthermore, some numerical experiments are provided to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

References

  1. Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)

    Article  MathSciNet  Google Scholar 

  2. Sun, Z.: The method of order reduction and its application to the numerical solutions of partial differential equations. Science Press, Beijing (2009)

    Google Scholar 

  3. Abbaszadeh, M., Dehghan, M., Khodadadian, A., Heitzinger, C.: Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher-Kolmogorov equation. Comput. Math. Appl. 80, 247–262 (2020)

    Article  MathSciNet  Google Scholar 

  4. Khebchareon, M., Pani, A.K., Fairweather, G.: Alternating direction implicit Galerkin methods for an evolution equation with a positive-type memory term. J. Sci. Comput. 65, 1166–1188 (2015)

    Article  MathSciNet  Google Scholar 

  5. Sun, Z.: Numerical methods for partial differential equations (in Chinese). Science Press, Beijing (2005)

    Google Scholar 

  6. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  7. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., Xu, D., Cao, J., Zhou, J.: A backward Euler alternating direction implicit difference scheme for the three-dimensional fractional evolution equation. Nume. Methods Partial Differ. Eq. 34, 938–958 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comp. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  Google Scholar 

  10. Pani, A.K., Fairweather, G., Fernandes, R.I.: ADI orthogonal spline collocation methods for parabolic partial integro-differential equations. Ima J. Numer, Anal (2009)

    Google Scholar 

  11. Qiao, L., Qiu, W., Tang, B.: A fast numerical solution of the 3D nonlinear tempered fractional integrodifferential equation, Numer. Methods Partial Differ. Eq. 1-22 (2022).

  12. Chen, M., Deng, W.: Discretized fractional substantial calculus, ESAIM: Math. Mod. Numer. Anal. 49, 373–394 (2015)

    Google Scholar 

  13. Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus, J. Comput. Phys. 293, 14-28 (2015)

  14. Qiao, L., Xu, D.: A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation. Adv. Comput. Math. 47, 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  15. Yang, X., Qiu, W., Zhang, H., Tang, L.: An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation. Comput. Math. Appl. 102, 233–247 (2021)

    Article  MathSciNet  Google Scholar 

  16. Qiao, L., Xu, D., Yan, Y.: High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math. Meth. Appl. Sci. 43, 5162–5178 (2020)

    Article  MathSciNet  Google Scholar 

  17. Li, Z., Yan, Y.: Error Estimates of High-Order Numerical Methods for Solving Time Fractional Partial Differential Equations. FCAA 21, 746–774 (2018)

    Article  MathSciNet  Google Scholar 

  18. Qiao, L., Xu, D., Qiu, W.: The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. Appl. Numer. Math. 172, 359–381 (2022)

    Article  MathSciNet  Google Scholar 

  19. Hendy, A.S., Zaky, M.A.: Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrdinger equations. Appl. Numer, Math (2020)

    Google Scholar 

  20. Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. Bit Numer Math 54, 555–584 (2014)

    Article  MathSciNet  Google Scholar 

  21. Luo, M., Qiu, W., Nikan, O., Avazzadeh, Z.: Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity, Appl. Math. and Comput. 440

  22. Asl, M.S., Javidi, M., Yan, Y.: High order algorithms for numerical solution of fractional differential equations. Adv Differ Equ 2021, 111 (2021)

    Article  MathSciNet  Google Scholar 

  23. Nikan, O., Avazzadeh, Z.: Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 169, 303–320 (2021)

    Article  MathSciNet  Google Scholar 

  24. Du, R., Sun, Z.: A fast temporal second-order compact ADI scheme for time fractional mixed diffusion-wave equations. East Asian J. Appl. Math. 11, 647–673 (2021)

    Article  MathSciNet  Google Scholar 

  25. Hendy, A.S., Macías-Díaz, J.E.: A novel discrete Grönwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations. Commun. Nonlinear. Sci. 73, 110–119 (2019)

    Article  MathSciNet  Google Scholar 

  26. Choi, J., MacCamy, R.: Fractional order Volterra equations. In: G. Da Prato and M. Iannelli (eds.), Volterra Integrodifferential equations in banach spaces and applications, Pitman Res. Notes Math. Harlow: Longman, 190, 231-245 (1989)

  27. Obeidat, N.A., Bentil, D.E.: New theories and applications of tempered fractional differential equations. Nonlinear Dyn 105, 1689–1702 (2021)

    Article  Google Scholar 

  28. Zaky, M.A.: Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl. Numer. Math. 145, 429–457 (2019)

    Article  MathSciNet  Google Scholar 

  29. Qiao, L., Qiu, W., Xu, D.: Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion, Numer Algor (2022)

  30. Chakraborty, A., Kumar, B.V.R.: Finite element method for drifted space fractional tempered diffusion equation. J. Appl. Math. Comput. 61, 117–135 (2019)

    Article  MathSciNet  Google Scholar 

  31. Qiao, L., Guo, J., Qiu, W.: Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type. Comput. Math. Appl. 123, 89–104 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their constructive comments and suggestions. We also thank Professor Yubin Yan for stimulating discussions and for his constant encouragement and support.

Funding

This work is supported by the National Natural Science Foundation of China (12101080) and Scientific Research Foundation of Hunan Provincial Education Department (21C0188). Hunan Provincial Natural Science Foundation of China (2022JJ40463). Postgraduate Scientific Research Innovation Project of Hunan Province (CX20220955). National foreign expert introduction foundation (G2022004016L). A. S. Hendy wishes to acknowledge the support of the RSF, Russia grant, project 22-21-00075.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of the authors is parithetic.

Corresponding authors

Correspondence to L. Qiao, M. A. Zaky or A. S. Hendy.

Ethics declarations

Ethics approval

Not applicable

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Qiao, L., Zaky, M.A. et al. A second-order finite difference scheme for nonlinear tempered fractional integrodifferential equations in three dimensions. Numer Algor 95, 319–349 (2024). https://doi.org/10.1007/s11075-023-01573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01573-2

Keywords

Navigation