Skip to main content
Log in

A fast and high-order IMEX method for non-linear time-space-fractional reaction-diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An efficient and high-order numerical method is presented for solving a time-space-fractional reaction-diffusion equation. Matrix transfer technique based on fourth-order compact finite differences is first used to discretize the space-fractional Laplacian operator which results in a system with a linear stiff term. Then, an implicit-explicit (IMEX) trapezoidal product-integration rule is implemented for time integration which treats the stiff linear term implicitly and non-linear non-stiff term explicitly. The stability and convergence of the method are analyzed. Due to the discontinuity of the solution derivative at \(t=0\), the numerical method is only \(1+\alpha \) order accurate in time where \(\alpha \) is the order of the time-fractional derivative. Richardson extrapolation is introduced to obtain a modified version of the method which is second order accurate in time. A fast algorithm based on discrete sine transform is also implemented to reduce the cost of computing the discretized space-fractional Laplacian operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  2. R. Metzler, Klafter. J: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

  3. Metzler, R., Nonnenmacher, T.F.: Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)

    Article  Google Scholar 

  4. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MathSciNet  Google Scholar 

  5. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A + B \(>\) C reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)

    Article  Google Scholar 

  6. Yuste, S.B., Lindenberg, K.: Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 87, 118301 (2001)

    Article  Google Scholar 

  7. Hall, M.G., Barrick, T.R.: From diffusion-weighted MRI to anomalous diffusion imaging. Magn. Reson. Med. 59, 447–455 (2008)

    Article  Google Scholar 

  8. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008)

    Article  Google Scholar 

  9. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  10. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  11. Cartea, A., del Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Phys. A 374(2), 749–763 (2007)

    Article  Google Scholar 

  12. Wyss, W.: The fractional Black-Scholes equations. Fract. Calc. Appl. Anal. 3(1), 51–61 (2000)

    MathSciNet  Google Scholar 

  13. Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)

    MathSciNet  Google Scholar 

  14. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  15. Pozrikidis, C.: The Fractional Laplacian. CRC Press (2016)

  16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, New York (1987)

    Google Scholar 

  17. Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II) with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006)

    MathSciNet  Google Scholar 

  18. Ding, H.F., Zhang, Y.X.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012)

    Article  MathSciNet  Google Scholar 

  19. Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39(1), A214–A228 (2017)

    Article  MathSciNet  Google Scholar 

  20. Chen, S., Jiang, X., Liu, F., Turner, I.: High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J. Comput. Appl. Math. 278, 119–129 (2015)

    Article  MathSciNet  Google Scholar 

  21. Khaliq, A.Q.M., Biala, T.A., Alzahrani, S.S., Faruti, K.M.: Linearly implicit predictor-corrector methods for space-fractional reaction-diffusion equations with non-smooth initial data. Comp. Math. Appl. 75, 2629–2657 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kazmi, K., Khaliq, A.: An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions. Appl. Numer. Math. 147, 142–160 (2020)

    Article  MathSciNet  Google Scholar 

  23. Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011)

    Article  MathSciNet  Google Scholar 

  24. Duo, S., Ju, L., Zhang, Y.: A fast algorithm for solving the space-time fractional diffusion equation. Comput. Math. Appl. 75, 1929–1941 (2018)

    Article  MathSciNet  Google Scholar 

  25. Biala, T.A., Khaliq, A.Q.M.: Parallel algorithms for nonlinear time-space fractional parabolic PDEs. J. of Comput. Phys. 375, 135–154 (2018)

    Article  MathSciNet  Google Scholar 

  26. Young, A.: Approximate product-integration. Proc. R. Soc. Lond. Ser. A 224, 552–561 (1954)

    Article  MathSciNet  Google Scholar 

  27. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MathSciNet  Google Scholar 

  28. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  29. Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014)

    Article  MathSciNet  Google Scholar 

  30. Garrappa, R., Popolizio, M.: A computationally efficient strategy for time-fractional diffusion-reaction equations. Comput. Math. Appl. 116, 181–193 (2022)

    Article  MathSciNet  Google Scholar 

  31. Li, Z., Liang, Z., Yan, Y.: High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71, 785–803 (2017)

    Article  MathSciNet  Google Scholar 

  32. Simpson, D. P.: Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion (Ph.D. thesis). Queensland University of Technology, Brisbane (2008)

  33. Diethlm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

  34. Lubich, C.: Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41(163), 87–102 (1983)

    Article  MathSciNet  Google Scholar 

  35. Dixon, J.: On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions. BIT 25(4), 624–634 (1985)

    Article  MathSciNet  Google Scholar 

  36. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhu, L., Ju, L., Zhao, W.D.: Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67, 1043–1065 (2016)

    Article  MathSciNet  Google Scholar 

  38. Bhatt, H. P.: Numerical simulation of high-dimensional two-component reaction-diffusion systems with fractional derivatives. Int. J. Comput. Math. 1–22 (2022). https://doi.org/10.1080/00207160.2022.2079081

  39. Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics. SIAM, Philadelphia (1992)

    Book  Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewers for their constructive suggestions and comments to improve the paper.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Kamran Kazmi.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The author has no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, K. A fast and high-order IMEX method for non-linear time-space-fractional reaction-diffusion equations. Numer Algor 95, 243–266 (2024). https://doi.org/10.1007/s11075-023-01570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01570-5

Keywords

Navigation