Skip to main content
Log in

A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This-36pt paper considers a discontinuous Galerkin finite element method for the 2D transient and incompressible Navier-Stokes model. Following the analysis of Heywood and Rannacher (SIAM J. Numer. Anal. 19:275–311, 1982), we derive optimal velocity and pressure error estimates in \(L^{\infty }({\textbf {L}}^{2})\) and \(L^{\infty }(L^{2})\)-norms, respectively, for the discontinuous Galerkin case. We use standard \(L^{2}\)-projection and modified Stokes operator but on appropriate broken Sobolev spaces, and then standard duality arguments to achieve these results. For sufficiently small data, uniform in time estimates are proved. Based on the backward Euler method, time discretization is carried out and fully discrete error estimates are derived. Finally, numerical experiments are conducted to verify our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comp. 86, 1643–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaabane, N., Girault, V., Puelz, C., Riviere, B.: Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations. J. Comput. Appl. Math. 324, 25–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Li, Y., Drapaca, C., Cimbala, J.: A unified framework of continuous and discontinuous Galerkin methods for solving the incompressible Navier-Stokes equation. J. Comput. Phys. 422, 109799 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chrysafinos, K., Walkington, N.J.: Discontinuous Galerkin approximation of the Stokes and Navier-Stokes equations. Math. Comp. 79, 2135–2167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  7. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comp. 74, 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Kanschat, G., Schötzau, D.: An equal-order DG Method for the incompressible Navier-Stokes equations. J. Sci. Comput. 40, 188–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. 79, 1303–1330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, vol. 69. Springer Science & Business Media (2012)

  12. Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equations. Lecture Notes in Math, vol. 749. Springer, Berlin (1979)

  13. Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Girault, V., Rivière, B., Wheeler, M.F.: A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM: Math. Model. Numer. Anal. 39, 1115–1147 (2005)

  15. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74, 53–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

  17. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

  18. Jing, F., Han, W., Yan, W., Wang, F.: Discontinuous Galerkin methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type. J. Sci. Comput. 76, 888–912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karakashian, O.A., Jureidini, W.N.: A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaya, S., Rivière, B.: A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 43, 1572–1595 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirk, K.L.A., Horváth, T.L., Rhebergen, S.: Analysis of an exactly mass conserving space-time hybridized discontinuous Galerkin method for the time-dependent Navier-Stokes equations. Math. Comp. 92, 525–556 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirk, K.L.A., Rhebergen, S.: Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations. J. Sci. Comput. 81, 881–897 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasis, A., Süli, E.: Poincaré-type inequalities for broken Sobolev spaces, Tech. Report 03/10, Oxford University Computing Laboratory, Oxford, England (2003)

  24. Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C.A. (Ed.) Mathematical Aspects of Finite Element Methods in Partial Differential Equations, pp. 89–123. Academic Press (1974)

  25. Masri, R., Liu, C., Riviere, B.: A discontinuous Galerkin pressure correction scheme for the incompressible Navier-Stokes equations: Stability and convergence. Math. Comp. (2022). https://doi.org/10.1090/mcom/3731

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Piatkowski, M., Müthing, S., Bastian, P.: A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations. J. Comput. Phys. 356, 220–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36, 1943–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76, 1484–1501 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  31. Rivière, B., Girault, V.: Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces. Comput. Methods Appl. Mech. Engrg. 195, 3274–3292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, S., Deng, W., Yuan, J., Wu, Y.: Characteristic local discontinuous Galerkin methods for incompressible Navier-Stokes equations. Commun. Comput. Phys. 22, 202–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The first author received support from Indian Institute of Technology Goa, India, under the start up grant project no. 2019/SG/SB/022. And the third author received financial support from the Council of Scientific & Industrial Research (CSIR) (09/796(0095)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. And all authors read and approved the final manuscript.

Corresponding author

Correspondence to Deepjyoti Goswami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S., Goswami, D. & Ray, K. A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations. Numer Algor 94, 937–1002 (2023). https://doi.org/10.1007/s11075-023-01525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01525-w

Keywords

Navigation