Skip to main content
Log in

Interpretation of parareal as a two-level additive Schwarz in time preconditioner and its acceleration with GMRES

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe an interpretation of parareal as a two-level additive Schwarz preconditioner in the time domain. We show that this two-level preconditioner in time is equivalent to parareal and to multigrid reduction in time (MGRIT) with F-relaxation. We also discuss the case when additional fine or coarse propagation steps are applied in the preconditioner. This leads to procedures equivalent to MGRIT with FCF-relaxation and to MGRIT with F(CF)2-relaxation or overlapping parareal. Numerical results show that these variants have faster convergence in some cases. In addition, we also apply a Krylov subspace method, namely GMRES (generalized minimal residual), to accelerate the parareal algorithm. Better convergence is obtained, especially for the advection-reaction-diffusion equation in the case when advection and reaction coefficients are large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Académie des Sci.- Series I - Math. 332, 661–668 (2001). https://doi.org/10.1016/S0764-4442(00)01793-6

    MATH  Google Scholar 

  2. Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66, 057701 (2002). https://doi.org/10.1103/PhysRevE.66.057701

    Article  Google Scholar 

  3. Eghbal, A., Gerber, A.G., Aubanel, E.: Acceleration of unsteady hydrodynamic simulations using the parareal algorithm. J. Comput. Sci. 19, 57–76 (2016). https://doi.org/10.1016/j.jocs.2016.12.006

    Article  Google Scholar 

  4. Baudron, A.M., Lautard, J.J., Maday, Y., Mula, O.: The parareal in time algorithm applied to the kinetic neutron diffusion equation. In: Domain decomposition methods in science and engineering XXI. Lecture notes in computational science and engineering, pp 437–445. Springer (2014). https://doi.org/10.1007/978-3-319-05789-7_41

  5. Baudron, A.M., Lautard, J.J., Maday, Y., Riahi, M.K., Salomon, J.: Parareal in time 3D numerical solver for the LWR benchmark neutron diffusion transient model. J. Comput. Phys. 279(0), 67–79 (2014). https://doi.org/10.1016/j.jcp.2014.08.037

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaber, S.M., Maday, Y.: Parareal in time approximation of the Korteveg-deVries-Burgers’ equations. PAMM 7, 1026403–1026404 (2007). https://doi.org/10.1002/pamm.20070057

    Article  Google Scholar 

  7. Dai, X., Le Bris, C., Legoll, F., Maday, Y.: Symmetric parareal algorithms for Hamiltonian systems. ESAIM: Math. Model. Numerical Anal. 47, 717–742 (2013). https://doi.org/10.1051/m2an/2012046

    Article  MathSciNet  MATH  Google Scholar 

  8. Gander, M.J., Hairer, E.: Analysis for parareal algorithms applied to Hamiltonian differential equations. J. Comput. Appl. Math. 259 Part A(0), 2–13 (2014). Proceedings of the Sixteenth International Congress on Computational and Applied Mathematics (ICCAM-2012), Ghent, Belgium 9-13 July, 2012, https://doi.org/10.1016/j.cam.2013.01.011

    Article  MathSciNet  MATH  Google Scholar 

  9. Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put. In: Pavarino, L., Toselli, A. (eds.) Recent Developments in Domain Decomposition Methods. Lecture notes in computational science and engineering, vol. 23, pp. 189–202. Springer (2002). https://doi.org/10.1007/978-3-642-56118-4_12

  10. Pagès, G., Pironneau, O., Sall, G.: The parareal algorithm for american options. SIAM J. Financial Math. 9(3), 966–993 (2018). https://doi.org/10.1137/17M1138832

    Article  MathSciNet  MATH  Google Scholar 

  11. Magoulès, F., Gbikpi-Benissan, G., Zou, Q.: Asynchronous iterations of parareal algorithm for option pricing models. Mathematics, vol. 6(4). https://doi.org/10.3390/math6040045 (2018)

  12. Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T., Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering, pp. 425–432. Springer (2005)

  13. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007). https://doi.org/10.1137/05064607X

    Article  MathSciNet  MATH  Google Scholar 

  14. Staff, G.A., RØnquist, E.M.: Stability of the parareal algorithm. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T., Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering, pp. 449–456. Springer (2005)

  15. Gander, M.J., Hairer, E.: Nonlinear convergence analysis for the parareal algorithm. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, pp 45–56. Springer (2008)

  16. Minion, M.L., Williams, S.A.: Parareal and spectral deferred corrections. In: AIP conference proceedings, vol. 1048, pp. 388 (2008). https://doi.org/10.1063/1.2990941

  17. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010). https://doi.org/10.2140/camcos.2010.5.265

    Article  MathSciNet  MATH  Google Scholar 

  18. Gander, M.J., Jiang, Y.L., Li, R.J.: Parareal Schwarz waveform relaxation methods. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XX. Lecture notes in computational science and engineering, vol. 91, pp. 451–458. Springer (2013). https://doi.org/10.1007/978-3-642-35275-1_53

  19. Gander, M., Jiang, Y., Song, B.: A superlinear convergence estimate for the parareal schwarz waveform relaxation algorithm. SIAM J. Sci. Comput. 41(2), 1148–1169 (2019). https://doi.org/10.1137/18M1177226

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedhoff, S., Falgout, R.D., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: A multigrid-in-time algorithm for solving evolution equations in parallel. In: Presented At: sixteenth copper mountain conference on multigrid methods, copper mountain, CO, United States, 17-22 Mar, 2013 (2013). http://www.osti.gov/scitech/servlets/purl/1073108

  21. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36, 635–661 (2014). https://doi.org/10.1137/130944230

    Article  MathSciNet  MATH  Google Scholar 

  22. Hessenthaler, A., Nordsletten, D., Rḧrle, O., Schroder, J.B., Falgout, R.D.: Convergence of the multigrid reduction in time algorithm for the linear elasticity equations. Numerical Linear Algebra Appl. 25(3), 2155 (2018). https://doi.org/10.1002/nla.2155

    Article  MathSciNet  Google Scholar 

  23. Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. Acta. Numerica. 3, 61–143 (1994). https://doi.org/10.1017/S0962492900002427

    Article  MathSciNet  MATH  Google Scholar 

  24. Toselli, A., Widlund, O.: Domain Decomposition Methods – Algorithms and Theory. Springer Series in Computational Mathematics. 34 (2005). https://doi.org/10.1007/b137868

  25. Dobrev, V., Kolev, T., Petersson, N., Schroder, J.: Two-level convergence theory for parallel time integration with multigrid. SIAM J. Scientific Comput. 39, 501–527 (2017). https://doi.org/10.1137/16M1074096

    Article  MathSciNet  Google Scholar 

  26. Gander, M.J., Kwok, F., Zhang, H.: Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT. Comput. Visualization Sci. https://doi.org/10.1007/s00791-018-0297-y (2018)

  27. Ruprecht, D.: Convergence of Parareal with spatial coarsening. PAMM 14(1), 1031–1034 (2014). https://doi.org/10.1002/pamm.201410490

    Article  Google Scholar 

  28. Hirsch, C.: Numerical computation of internal and external flows: the fundamentals of computational fluid dynamics. Elsevier. https://www.bibsonomy.org/bibtex/2dbbc53f6feab1cd458e1c4f2a5c7e11c/tobydriscoll (2007)

  29. Nevanlinna, O.: Linear acceleration of picard-lindelöf iteration. Numer. Math. 57, 147–156 (1990). https://doi.org/10.1007/BF01386404

    Article  MathSciNet  MATH  Google Scholar 

  30. Minion, M.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci., vol. 5. https://doi.org/10.2140/camcos.2010.5.265 (2010)

Download references

Acknowledgements

We would like to thank Martin J. Gander for his valuable discussions and the reviewers for constructive comments that helped us improve the manuscript.

Funding

Funding was provided by the French National Research Agency (ANR) Contract ANR-15-CE23-0019 (project CINE-PARA).

Author information

Authors and Affiliations

Authors

Contributions

- Describe an interpretation of parareal as a two-level additive Schwarz preconditioner in the time domain so-called SC two-level additive Schwarz in time preconditioner.

- Show the equivalence between the three methods: SC two-level additive Schwarz in time preconditioner, MGRIT with F-relaxation and parareal.

- Introduce some variants as SCS, S(CS)2 two-level additive Schwarz in time preconditioner and show their equivalence to MGRIT with FCF-relaxation, and to MGRIT with F(CF)2-relaxation or overlapping parareal.

- Propose a variant referred to as SCS2 two-level additive Schwarz in time preconditioner which converges faster and efficiently exploits parallel computing.

- Present the convergence analysis and convergence estimate of SC two-level additive Schwarz in time preconditioner and its variants.

- Present the computational cost analysis of parareal with GMRES acceleration.

- Conduct numerical experiments to show the equivalence between parareal and SC two-level additive Schwarz in time preconditioner, the comparison between SC two-level additive Schwarz in time preconditioner and its variants, the acceleration of parareal with GMRES and the computational cost comparison.

Corresponding author

Correspondence to Van-Thanh Nguyen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors approved it for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Laura Grigori contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, VT., Grigori, L. Interpretation of parareal as a two-level additive Schwarz in time preconditioner and its acceleration with GMRES. Numer Algor 94, 29–72 (2023). https://doi.org/10.1007/s11075-022-01492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01492-8

Keywords

Navigation