Skip to main content
Log in

A fast accurate artificial boundary condition for the Euler-Bernoulli beam

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

It is difficult to convert the PDEs defined on the whole space with higher order space derivatives into initial boundary value problems by proposing boundary conditions. In this paper, we use an absorbing boundary condition method to solve the Cauchy problem for one-dimensional Euler-Bernoulli beam with fast convolution boundary condition which is derived through the Padé approximation for the square root function \(\sqrt {\cdot }\). We also introduce a constant damping term to control the error between the resulting approximation of the Euler-Bernoulli system and the original one. Numerical examples verify the theoretical results and demonstrate the performance for the fast numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tran, L., Hoang, T., Duhamel, D., Foret, G., Messad, S., Loaec, A.: A fast analytic method to calculate the dynamic response of railways sleepers. J. Vib. Acoust. 141, 7 (2019)

    Article  Google Scholar 

  2. Uzzal, R., Bhat, R., Ahmed, W.: Dynamic response of a beam subjected to moving load and moving mass supported by Pasternak foundation, Shock. Vib. 19, 205–220 (2012)

    Google Scholar 

  3. Chen, X., Diaz, A., Xiong, L., McDowell, D. L., Chen, Y.: Passing waves from atomistic to continuum. J. Comput. Phys. 354, 393–402 (2018)

    Article  MathSciNet  Google Scholar 

  4. Roy, S., Chakraborty, G., DasGupta, A.: On the wave propagation in a beam-string model subjected to a moving harmonic excitation. Int. J. Solids Struct. 162, 259–270 (2019)

    Article  Google Scholar 

  5. Zheng, C., Du, Q., Ma, X., Zhang, J.: Stability and error analysis for a second-order fast approximation of the local and nonlocal diffusion equations on the real Line. SIAM J. Num. Anal. 58, 1893–1917 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fevens, T., Jiang, H.: Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput. 21, 255–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential. J. Comput. Phys. 228, 312–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188, 157–175 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, X., Sun, Z.: Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Nume. Math. 50, 261–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baskakov, V., Popov, A.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion. 14, 123–128 (1991)

    Article  MathSciNet  Google Scholar 

  11. Han, H., Huang, Z.: Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Mathe. Appl. 44, 655–666 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Han, H., Huang, Z.: Exact artificial boundary conditions for the Schrödinger equation in r2. Commun. Math. Sci. 2, 79–94 (2004)

    Article  MathSciNet  Google Scholar 

  13. Arnold, A., Ehrhardt, M., Schulte, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci. 10, 889–916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, H., Wu, X., Zhang, J.: Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary. Comput. Phys. Commun. 185, 1606–1615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math Comput. 73, 1779–1799 (2004)

    Article  MATH  Google Scholar 

  16. Antoine, X., Besse, C., Klein, P.: Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation with an Exterior Potential. Part II: Discretization and Numerical Results. Num. Math. 125, 191–223 (2013)

    Article  MATH  Google Scholar 

  17. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pang, G., Yang, Y., Antoine, X., Tang, S.: Stability and convergence analysis of artificial boundary conditions for the Schrödinger equation on a rectangular domain, Preprint

  19. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schaedle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Pang, G., Tang, S.: Approximate linear relations for Bessel functions. Commun Math. Sci. 15, 1967–1986 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pang, G., Bian, L., Tang, S.: Almost Exact boundary condition for one-dimensional Schrödinger equation. Phys. Rev. E. 86, 066709 (2012)

    Article  Google Scholar 

  22. Ji, S., Yang, Y., Pang, G., Antoine, X.: Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains. Comput. Phys. Commun. 222, 84–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arnold, A., Ehrhardt, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun Math. Sci. 1, 501–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, S., Greengard, L.: Fast evaluation of nonreflecting boundary conditions for the Schrodinger̈ equation in one dimension. Comput. Math. Appl. 47, 955–966 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, C.: Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation. J. Comput. Math. 25, 730–745 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Num. Anal. 37, 1138–1164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, Y.: A padé approximation method for square roots of symmetric positive definite matrices. SIAM J. Num. Anal. 19, 833–845 (1998)

    Article  MATH  Google Scholar 

  28. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Compt. 24, 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, Y., Wang, X.: Matching boundary conditions for Euler-Bernoulli beam, Shock. Vib., 6685852 (2021)

  30. Tang, S., Karpov, E.: Artificial boundary conditions for Euler-Bernoulli beam equation. Acta Mech. Sinica-PRC. 30, 687–692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, B., Zhang, J., Zheng, C.: An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions. SIAM J. Num. Anal. 56, 766–791 (2018)

    Article  MATH  Google Scholar 

  32. Tang, S., Karpov, E.: Artificial boundary conditions for Euler-Bernoulli beam equation. Acta Mech. Sinica-PRC 30(5), 687–692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Prof Xavier Antonine for useful help and suggestions.

Funding

This research is partially supported by NSFC under grant Nos. 11832001 and 11502028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Pang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

Zheng did the numerical computation. Pang proposed the numerical algorithms and gave the proof.

Availability of supporting data

Not applicable.

Ethical approval

Not applicable.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Pang, G. A fast accurate artificial boundary condition for the Euler-Bernoulli beam. Numer Algor 93, 1685–1718 (2023). https://doi.org/10.1007/s11075-022-01485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01485-7

Keywords

Navigation