Skip to main content
Log in

Discrete comparison principle of a finite difference method for the multi-term time fractional diffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A discrete comparison principle is given for the multi-term time fractional diffusion equation, where the discrete scheme is based on L1 approximation of the multi-term temporal Caputo derivative and the standard finite difference approximation of the spatial derivative. Then we use the discrete comparison principle to give an error analysis of the discrete scheme by constructing a barrier function. The final numerical results verify our theoretical analysis under the realistic assumption that the solution of the time fractional diffusion equation has a weak singularity near the initial time t = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data included in this study are available upon reasonable request.

References

  1. Constantinescu, C.D., Ramirez, J.M., Zhu, W.R.: An application of fractional differential equations to risk theory. Finance Stoch. 23(4), 1001–1024 (2019). https://doi.org/10.1007/s00780-019-00400-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhou, X., Zhang, M., Wu, T.: Adaptive image denoising based on fractional differential operator and gauss curvature. Modern Electron. Tech. 42(15), 54–58 (2019). https://doi.org/10.16652/j.issn.1004-373x.2019.15.014

    Article  Google Scholar 

  3. Leonenko, N.N., Papić, I., Sikorskii, A., Šuvak, N.: Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology. J. Math. Anal. Appl. 486(2), 123934–22 (2020). https://doi.org/10.1016/j.jmaa.2020.123934

    Article  MathSciNet  MATH  Google Scholar 

  4. Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40(7-8), 4970–4985 (2016). https://doi.org/10.1016/j.apm.2015.12.011

    Article  MathSciNet  MATH  Google Scholar 

  5. Qin, S., Liu, F., Turner, I., Vegh, V., Yu, Q., Yang, Q.: Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J. Comput. Appl. Math. 319, 308–319 (2017). https://doi.org/10.1016/j.cam.2017.01.018

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013). https://doi.org/10.2478/s13540-013-0002-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Shen, S., Liu, F., Anh, V.V.: The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation. J. Comput. Appl. Math. 345, 515–534 (2019). https://doi.org/10.1016/j.cam.2018.05.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015). https://doi.org/10.1016/j.jcp.2014.10.051

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Z., Liu, Y., Yamamoto, M.: Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015). https://doi.org/10.1016/j.amc.2014.11.073

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, vol. 2004, p 247. Springer, Berlin (2010). An application-oriented exposition using differential operators of Caputo type

    MATH  Google Scholar 

  11. Chen, H., Stynes, M.: A discrete comparison principle for the time-fractional diffusion equation. Comput. Math. Appl. 80(5), 917–922 (2020). https://doi.org/10.1016/j.camwa.2020.04.018

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, C., Liu, X., Meng, X., Stynes, M.: Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. Comput. Methods Appl. Math. 20(4), 815–825 (2020). https://doi.org/10.1515/cmam-2019-0042

    Article  MathSciNet  MATH  Google Scholar 

  13. Stynes, M.: Singularities. In: Handbook of Fractional Calculus with Applications, vol. 3, pp 287–305. De Gruyter, Berlin (2019)

  14. Chen, H., Hu, X., Ren, J., Sun, T., Tang, Y.: L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity. Int. J. Mod. Sim. Sci. Comp. 10(1941006), 18 (2019). https://doi.org/10.1142/S179396231941006X

    Article  Google Scholar 

  15. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 41(2), 974–997 (2021). https://doi.org/10.1093/imanum/draa015

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, C., Stynes, M., Chen, H.: An α-robust finite element method for a multi-term time-fractional diffusion problem. J. Comput. Appl. Math. 389, 113334–8 (2021). https://doi.org/10.1016/j.cam.2020.113334

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, H., Shi, Y., Zhang, J., Zhao, Y.: Sharp error estimate of a Grünwald-Letnikov scheme for reaction-subdiffusion equations. Numer. Algoritm. 89(4), 1465–1477 (2022). https://doi.org/10.1007/s11075-021-01161-2

    Article  MATH  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China under Grant 11801026, and Fundamental Research Funds for the Central Universities (No. 202264006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Y. & Chen, H. Discrete comparison principle of a finite difference method for the multi-term time fractional diffusion equation. Numer Algor 93, 1581–1593 (2023). https://doi.org/10.1007/s11075-022-01480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01480-y

Keywords

Mathematics Subject Classification (2010)

Navigation