Skip to main content
Log in

Structure-preserving BDF2 FE method for the coupled Schrödinger-Boussinesq equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, a structure-preserving second-order backward difference formula (BDF2) finite element (FE) method for finding the numerical solution of nonlinear coupled Schrödinger-Boussinesq equations (NCSBEs) is presented and discussed, where the space direction is approximated by Galerkin FE method and the time direction is discretized making use of the BDF2. The important thing is that the approximate conservation results of mass and energy with sufficiently small time step length τ are proved. The stability of the scheme and the optimal convergence results in L2-norm are derived in detail. Finally, numerical experiments are done to demonstrate the optimal theory results and conservation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this article.

References

  1. Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62, 370–378 (1979)

    Article  Google Scholar 

  2. Rao, N.N.: Coupled scalar field equations for nonlinear wave modulations in dispersive media. Pramana J. Phys. 46, 161–202 (1991)

    Article  Google Scholar 

  3. Makhankov, V.G.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesqs equation. Phys. Lett. A 50, 42–44 (1974)

    Article  Google Scholar 

  4. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35(1), 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  5. Guo, B.L., Du, X.Y.: Existence of the periodic solution for the weakly damped Schrödinger-Boussinesq equation. J. Math. Anal. Appl. 262, 453–472 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, B.L.: The global solution of the system of equations for complex Schrödinger field coupled with Boussinesq type self-consistent field. Acta. Math. Sin. 26, 295–306 (1983). (in Chinese)

    Article  MATH  Google Scholar 

  7. Guo, B.L., Chen, F.X.: Finite dimensional behavior of global attractors for weakly damped nonlinear Schrödinger-Boussinesq equations. Physica D. 93, 101–118 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farah, L.G., Pastor, A.: On the periodic Schrödinger-Boussinesq system. J. Math. Anal. Appl. 368, 330–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karamali, G., Abbaszadeh, M., Dehghan, M.: The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrödinger equation and Schrödinger-Boussinesq system. Comput. Meth. Differ. Equ. 6(2), 215–237 (2018)

    MATH  Google Scholar 

  10. Bai, D.M., Zhang, L.M.: The quadratic B-spline finite element method for the coupled Schrödinger-Boussinesq equations. Int. J. Comput. Math. 88, 1714–1729 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, D.M., Wang, J.L.: The time-splitting fourier spectral method for the coupled Schrödinger-Bousinesq equations. Commun. Nonlinear Sci. Numer. Simulat. 17, 1201–1210 (2012)

    Article  MATH  Google Scholar 

  12. Zheng, J.D., Xiang, X.M.: The finite element analysis for the equation system coupling the complex Schrödinger and real Boussinesq fields. Math. Numer. Sin. 9(2), 133–143 (1987)

    MATH  Google Scholar 

  13. Tian, J.L., Sun, Z.Y., Liu, Y., Li, H.: TT-M finite element algorithm for the coupled Schrödinger-Boussinesq equations. Axioms 11, 314 (2022)

    Article  Google Scholar 

  14. Liu, Y., Li, H., Wang, J.F., Gao, W.: A new positive definite expanded mixed finite element method for parabolic integrodifferential equations. J. Appl. Math. 2012, 391372 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Liao, F., Zhang, L.M., Wang, S.S.: Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrödinger-Boussinesq equations. Appl. Numer. Math. 119, 194–212 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M.: Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger-Boussinesq equations. J. Sci. Comput. 93, 86 (2022)

    Article  MATH  Google Scholar 

  17. Cai, J., Yang, B., Zhang, C.: Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system. Appl. Math. Lett. 91, 76–82 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, F., Zhang, L.M.: Conservative compact finite difference scheme for the coupled Schrödinger-Boussinesq equation. Numer. Meth. Part. Differ. Equ. 32, 1667–1688 (2016)

    Article  MATH  Google Scholar 

  19. Deng, D.W., Wu, Q.: Analysis of the linearly energy- and mass-preserving finite difference methods for the coupled Schrödinger-Boussinesq equations. Appl. Numer. Math. 170, 14–38 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng, D.W., Wu, Q.: Linearized and decoupled structure-preserving finite difference methods and their analyses for the coupled Schrödinger-Boussinesq equations. Numer. Meth. Part. Differ. Equ. 37, 2924–2951 (2021)

    Article  Google Scholar 

  21. Huang, L., Jiao, Y., Liang, D.: Multi-sympletic scheme for the coupled Schrödinger-Boussinesq equations. Chin. Phys. B 22, 1–5 (2013)

    Article  Google Scholar 

  22. Zhang, L., Bai, D., Wang, S.: Numerical analysis for a conservative difference scheme to solve the Schrödinger-Boussinesq equations. J. Comput. Appl. Math. 235, 4899–4915 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Y., Du, Y.W., Li, H., Li, J.C., He, S.: A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70, 2474–2492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomée, V.: Galerkin Finite Element Method for Parabolic Problems. Lect. Notes. Math. Springer, Berlin (1984)

    Google Scholar 

  25. Wang, J.J., Li, M., Zhang, Y.: Superconvergence analysis of BDF-Galerkin FEM for nonlinear Schrödinger equation. Numer. Algor. 89, 195–222 (2022)

    Article  MATH  Google Scholar 

  26. Guo, B.L., Shen, L.J.: The global solution of initial value problem for nonlinear Schrödinger-Boussinesq equation in 3-dimensions. Acta Math. Appl. Sinica 6(1), 11–21 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank editors and reviewers very much for their valuable suggestions for improving our work.

Funding

This work is supported by the National Natural Science Foundation of China (12061053, 12161063), Natural Science Foundation of Inner Mongolia (2021MS01018), Young innovative talents project of Grassland Talents Project, Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2207), and National Innovation Project (202110126023).

Author information

Authors and Affiliations

Authors

Contributions

Y.N. Yang and Y. Liu wrote the main manuscript text, Z.Y. Sun implemented the numerical tests, and H. Li and Y. Liu checked the full text. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Sun, Z., Liu, Y. et al. Structure-preserving BDF2 FE method for the coupled Schrödinger-Boussinesq equations. Numer Algor 93, 1243–1267 (2023). https://doi.org/10.1007/s11075-022-01466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01466-w

Keywords

Mathematics Subject Classification (2010)

Navigation