Skip to main content
Log in

Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider one-step iterative algorithms to solve ill-posed inverse problems in the framework of variable exponent Lebesgue spaces Lp(⋅). These unconventional spaces are particular (non-Hilbertian) Banach spaces which can induce adaptive local regularization in the resolution of inverse problems. We first study gradient descent iteration schemes in Banach spaces, where the classical Riesz theorem does not hold and, consequently, primal and dual spaces are no longer isometrically isomorphic. In particular, we prove that gradient methods in Banach spaces can be fully explained and understood in the context of proximal operator theory, with appropriate norm or Bregman distances as proximity measure, which shows a deep connection between regularization iterative schemes and convex optimization. We review the key concept of duality map, and provide an explicit formula of the duality map for the space Lp(⋅). Then we apply the Landweber and the Conjugate Gradient methods, extended to Banach setting, to solve deblurring imaging problems in Lp(⋅) and propose an effective strategy to select the point-wise variable exponent function p(⋅). Our numerical tests show the advantages of considering variable exponent Lebesgue spaces w.r.t. both the standard L2 Hilbert and the constant exponent Lebesgue space Lp, in terms of both reconstruction quality and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Neubauer, A.: Tikhonov-regularization of ill-posed linear operator equations on closed convex sets. J. Approx. Theory 53(3), 304–320 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eicke, B.: Iteration methods for convexly constrained ill-posed problems in hilbert space. Numer. Funct. Anal. Optim. 13(5–6), 413–429 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Piana, M., Bertero, M.: Projected landweber method and preconditioning. Inverse Probl. 13(2), 441–463 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  5. Bredies, K.: A forward–backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space. Inverse Probl. 25(1), 015005 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization methods in banach spaces. De Gruyter (2012)

  7. Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1), 311–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  9. Brianzi, P., Di Benedetto, F., Estatico, C.: Preconditioned iterative regularization in banach spaces. Comput. Optim. Appl. 54(2), 263–282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  11. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces. Abstr. Appl. Anal (2006)

  12. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and sobolev spaces with variable exponents. Lecture Notes in Math Springer (2011)

  14. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces. Springer, Birkhäuser (2013)

    Book  MATH  Google Scholar 

  15. Dinca, G., Matei, P.: Geometry of Sobolve spaces with variable exponent and a generalization of the p-Laplacian. Anal. Appl. 07(04), 373–390 (2009)

    Article  MATH  Google Scholar 

  16. Ciarlet, P.G., Dinca, G., Matei, P.: Operator equations and duality mappings in sobolev spaces with variable exponents. Chinese Annals of Mathematics Series B 34(5), 639–666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinca, G., Matei, P.: Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity. C. R. Math. 347(15), 885–889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matei, P.: A nonlinear eigenvalue problem for the generalized Laplacian on Sobolev spaces with variable exponent. Rom. J. Math. Comput. Sci. 2(2), 70–82 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Matei, P.: On the fréchet differentiability of Luxemburg norm in the sequence spaces p(n) with variable exponents. Rom. J. Math. Comput. Sci. 4(2), 167–179 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Estatico, C., Gratton, S., Lenti, F., Titley-Peloquin, D.: A conjugate gradient like method for p-norm minimization in functional spaces. Numer. Math. 137, 895–922 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazzaretti, M., Calatroni, L., Estatico, C.: Modular-proximal gradient algorithms in variable exponent lebesgue spaces. SIAM J. Sci. Comp., 44(6), A3463–A3489 (2022)

  22. Estatico, C., Fedeli, A., Pastorino, M., Randazzo, A.: Quantitative microwave imaging method in lebesgue spaces with nonconstant exponents. IEEE Trans. Antennas Propag. 66(12), 7282–7294 (2018)

    Article  Google Scholar 

Download references

Funding

This work is partially supported by GNCS-INDAM, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Estatico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Brigida Bonino, Claudio Estatico and Marta Lazzaretti contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonino, B., Estatico, C. & Lazzaretti, M. Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging. Numer Algor 92, 149–182 (2023). https://doi.org/10.1007/s11075-022-01458-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01458-w

Keywords

Navigation