Skip to main content
Log in

Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper proposes and analyzes a tempered fractional integrodifferential equation in three-dimensional (3D) space. The Crank-Nicolson (CN) method and trapezoidal convolution quadrature rule are used to approximate the time derivative and tempered fractional integral term respectively, and finite difference/compact difference approaches combined with corresponding alternating direction implicit (ADI) algorithms are employed for spatial discretizations, which obtains the fully discrete CN ADI finite difference/compact difference schemes. Then, convergence analysis of two kinds of ADI schemes is derived via the energy argument and the generating function of Toeplitz matrices. Provided numerical examples confirm our theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan, R.H.F., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM (2007)

  2. Chen, C., Thomée, V., Wahlbin, L.B.: Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comput. 58, 587–602 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, H., Xu, D., Cao, J., Zhou, J.: A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation. Int. J. Comput. Math. 97, 1100–1117 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM: Math. Mod. Numer. Anal. 49, 373–394 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Chen, M., Deng, W.: A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68, 87–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, W., Li, B., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernandez, A., Ustaoğlu, C.: On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 366, 112400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, L., Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: Efficient multistep methods for tempered fractional calculus: Algorithms and simulations. SIAM J. Sci. Comput. 41, A2510–A2535 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications, 2nd edn. AMS Chelsea, Providence (2001)

    MATH  Google Scholar 

  12. Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Disc. Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019)

    MATH  Google Scholar 

  13. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Qiao, L., Xu, D.: Compact ADI scheme for integro-differential equations of parabolic type. J. Sci. Comput. 76, 565–582 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qiu, W., Chen, H., Zheng, X.: An implicit difference scheme and algorithm implementation for the one-dimensional timefractional Burgers equations. Math. Comput. Simul. 166, 298–314 (2019)

    Article  MATH  Google Scholar 

  19. Qiu, W., Xu, D., Guo, J.: Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation. Appl. Math. Comput. 392, 125693 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sultana, F., Singh, D., Pandey, R.K., Zeidan, D.: Numerical schemes for a class of tempered fractional integro-differential equations. Appl. Numer. Math. 157, 110–134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, Z.: The Method of Order Reduction and its Application to the Numerical Solutions of Partial Differential Equations. Science Press, Beijing (2009)

    Google Scholar 

  23. Xu, D.: The long-time global behavior of time discretization for fractional order Volterra equations. Calcolo 35, 93–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan, Y., Khan, M., Ford, N.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zaky, M.A.: Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl. Numer. Math. 145, 429–457 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 12101080, 12126308, 12126303, 12071127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlin Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Qiu, W. & Xu, D. Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion. Numer Algor 93, 1083–1104 (2023). https://doi.org/10.1007/s11075-022-01454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01454-0

Keywords

Navigation