Skip to main content
Log in

A bidiagonalization-based numerical algorithm for computing the inverses of (p,q)-tridiagonal matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

As a generalization of k-tridiagonal matrices, many variations of (p,q)-tridiagonal matrices have attracted much attention over the years. In this paper, we present an efficient algorithm for numerically computing the inverses of n-square (p,q)-tridiagonal matrices under a certain condition. The algorithm is based on the combination of a bidiagonalization approach which preserves the banded structure and sparsity of the original matrix, and a recursive algorithm for inverting general lower bidiagonal matrices. Some numerical results with simulations in MATLAB implementation are provided in order to illustrate the accuracy and efficiency of the proposed algorithms, and its competitiveness with MATLAB built-in function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2

Similar content being viewed by others

References

  1. Sogabe, T., El-Mikkawy, M.E.A.: Fast block diagonalization of k-tridiagonal matrices. Appl. Math. Comput. 218(6), 2740–2743 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Fonseca, C.M., Kowalenko, V., Losonczi, L.: Ninety years of k-tridiagonal matrices. Stud. Sci. Math. Hung. 57(3), 298–311 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Takahira, S., Sogabe, T., Usuda, T.S.: Bidiagonalization of (k,k + 1)-tridiagonal matrices. Special Matrices 7(1), 20–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fonseca, C.M.D., Sogabe, T., Yilmaz, F.: Lower k-Hessenberg matrices and k-Fibonacci, Fibonacci-p and Pell (p,i) numbers. General Mathematical Notes 31(1), 10–17 (2015)

    Google Scholar 

  5. Ohashi, A., Sogabe, T., Usuda, T.S.: Fast block diagonalization of \((k, k^{\prime }) \)-pentadiagonal matrices. Int. J. Pure Appl. Math. 106(2), 513–523 (2016)

    Article  Google Scholar 

  6. Burden, R.L., Faires, J.D., Burden, A.M.: Numerical Analysis Cengage Learning (2015)

  7. Fischer, C.F., Usmani, R.A.: Properties of some tridiagonal matrices and their application to boundary value problems. SIAM J. Numer. Anal. 6(1), 127–142 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wittenburg, J.: Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics. J. Appl. Math. Mech. 62(4), 575–587 (1998)

    Article  MathSciNet  Google Scholar 

  9. Yamamoto, T.: Inversion formulas for tridiagonal matrices with applications to boundary value problems. Numer. Funct. Anal. Optim. 22(3-4), 357–385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borevich, Z.I., Shafarevich, I.R.: Number Theory. Academic press, New York (1986)

    MATH  Google Scholar 

  11. El-Mikkawy, M.E.A., Sogabe, T.: A new family of k-Fibonacci numbers. Appl. Math. Comput. 215(12), 4456–4461 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Fukuda, A., Ishiwata, E., Iwasaki, M., Nakamura, Y.: The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues. Inverse Probl. 25(1), 015007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutknecht, M.H.: Variants of BiCGSTAB for matrices with complex spectrum. SIAM J. Sci. Comput. 14(5), 1020–1033 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Mikkawy, M.E.A.: On the inverse of a general tridiagonal matrix. Appl. Math. Comput. 150(3), 669–679 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Fonseca, C.M.D., Petronilho, J.: Explicit inverses of some tridiagonal matrices. Linear Algebra Appl. 325(1), 7–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, J., Sogabe, T., El-Mikkawy, M.E.A.: Inversion of k-tridiagonal matrices with Toeplitz structure. Comput. Math. Applic. 65(1), 116–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Mikkawy, M.E.A., Atlan, F.: A novel algorithm for inverting a general k-tridiagonal matrix. Appl. Math. Lett. 32, 41–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. El-Mikkawy, M.E.A., Atlan, F.: A new recursive algorithm for inverting general k-tridiagonal matrices. Appl. Math. Lett. 44, 34–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, J., Li, S.: Symbolic algorithms for the inverses of general k-tridiagonal matrices. Comput. Math. Applic. 70(12), 3032–3042 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fonseca, C.M.D., Petronilho, J.: Explicit inverse of a tridiagonal k- Toeplitz matrix. Numer. Math. 100(3), 457–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Encinas, A., Jiménez, M.: Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix. Linear Algebra Appl. 542, 402–421 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagata, M., Hada, M., Iwasaki, M., Nakamura, Y.: Eigenvalue clustering of coefficient matrices in the iterative stride reductions for linear systems. Comput. Math. Applic. 71(1), 349–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tănăsescu, A., Popescu, P.G.: A fast singular value decomposition algorithm of general k-tridiagonal matrices. J. Comput. Sci. 31, 1–5 (2019)

    Article  MathSciNet  Google Scholar 

  24. Zhang, N., Feng, J., Li, Z., Jia, K.: Fast photoacoustic imaging reconstruction method based on lanczos double diagonalization. Chinese J. Lasers 45(3), 0307018 (2018)

    Article  Google Scholar 

  25. Shinjo, M., Wang, T., Iwasaki, M., Nakamura, Y.: Roots of characteristic polynomial sequences in iterative block cyclic reductions. Mathematics 9(24), 3213 (2021)

    Article  Google Scholar 

  26. Jia, J., Yan, Y., He, Q.: A block diagonalization based algorithm for the determinants of block k-tridiagonal matrices. J. Math. Chem. 59(3), 745–756 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chatterjee, G.: Negative integral powers of a bidiagonal matrix. Math. Comput. 28(127), 713–714 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that substantially enhanced the quality of the manuscript.

Funding

This work was supported by the Natural Science Foundation of China (NSFC) under grant 11601408 and the Fundamental Research Funds for the Central Universities under grant JB210720 and YJS2223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Teng Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rong Xie, Xiao-Yan Xu, Shuo Ni, and Jie Wang contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, JT., Xie, R., Xu, XY. et al. A bidiagonalization-based numerical algorithm for computing the inverses of (p,q)-tridiagonal matrices. Numer Algor 93, 899–917 (2023). https://doi.org/10.1007/s11075-022-01446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01446-0

Keywords

Mathematics Subject Classification (2010)

Navigation