Skip to main content
Log in

Bernstein super fractal interpolation function for countable data systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce a fractal operator on \(\mathcal {C}[0,1]\) which sends a function \(f \in \mathcal {C}(I)\) to fractal version of f where fractal version of f is a super fractal interpolation function corresponding to a countable data system. Furthermore, we study the continuous dependence of super fractal interpolation functions on the parameters used in the construction. We know that the invariant subspace problem and the existence of a Schauder basis gained lots of attention in the literature. Here, we also show the existence of non-trivial closed invariant subspace of the super fractal operator and the existence of fractal Schauder basis for \(\mathcal {C}(I)\). Moreover, we can see the effect of the composition of Riemann-Liouville integral operator and super fractal operator on the fractal dimension of continuous functions. We also mention some new problems for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  3. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory. 57(1), 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnsley, M.F.: Fractals Super. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  5. Beer, G.: Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance. Proc. Amer. Math. Soc. 95, 653–658 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(03), 2150066 (2021)

    Article  MATH  Google Scholar 

  7. Chandra, S., Abbas, S.: Analysis of fractal dimension of mixed Riemann-Liouville integral, Numerical Algorithms. https://doi.org/10.1007/s11075-022-01290-2 (2022)

  8. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley Sons Inc, New York (1990)

    MATH  Google Scholar 

  9. Gowrisankar, A., Uthayakumar, R.: Fractional calculus on fractal interpolation for a sequence of data with countable iterated function system. Mediterr J. Math. 13, 3887–3906 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jachymski, J.: Continuous dependence of attractors of iterated function systems. J. Math. Anal. Appl. 198, 221–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kapoor, G.P., Prasad, S.A.: Super fractal interpolation functions. Int. J. Nonlinear Sci. 19(1), 20–29 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Kapoor, G.P., Prasad, S.A.: Convergence of cubic spline super fractal interpolation functions. Fractals 22(1,2), 7 (2014)

    MATH  Google Scholar 

  13. Liang, Y.S.: Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal. 72(11), 4304–4306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, Y.S.: Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions. Frac. Calc. Appl. Anal. 21(6), 1651–1658 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Limaye, B.V.: Linear Functional Analysis for Scientists and Engineers. Springer, Singapore (2016)

    Book  MATH  Google Scholar 

  16. Mauldin, R.D., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. 3(1), 105–154 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nussbaum, R.D., Priyadarshi, A., Verduyn Lunel, S.: Positive operators and Hausdorff dimension of invariant sets. Trans. Amer. Math Soc. 364(2), 1029–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Navascués, M. A.: Affine fractal functions as bases of continuous functions, Quaest. Math. 1–20 (2014)

  21. Navascués, M.A.: New equilibria of non-autonomous discrete dynamical systems. Chaos Solitons Fractals 152, 111413 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Priyadarshi, A.: Lower bound on the Hausdorff dimension of a set of complex continued fractions. J. Math. Anal. Appl. 449(1), 91–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Read, C.J.: Quasinilpotent operators and the invariant subspace problem. J London Math. Soc. 56(3), 595–606 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ri, S.I.: A new idea to construct the fractal interpolation function. Indag Math. 29(3), 962–971 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ri, S.I.: Fractal functions on the Sierpinski gasket. Chaos, Solitons Fractals 138, 110142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruan, H.J., Sub, W.-Y., Yao, K.: Box dimension and fractional integral of linear fractal interpolation functions. J Approx. Theory 161, 187–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strotkin, G.: A modification of read’s transitive operator. J. Operator Theor. 55:1, 153–167 (2006)

    MathSciNet  Google Scholar 

  28. Schonefeld, S.: Schauder bases in spaces of differentiable functions. Bull. Amer. Math. Soc. 75, 586–590 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Secelean, N.A.: The fractal interpolation for countable systems of data, Beograd University Publikacije Electrotehn. Fak. Ser. Matematika 14, 11–19 (2003)

    Google Scholar 

  30. Secelean, N.A.: Approximation of the attractor of a countable iterated function system. Gen. Math. 3, 221–231 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Secelean, N.A.: The existence of the attractor of countable iterated function systems. Mediterr. J. Math. 9, 61–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vijender, N.: Bernstein fractal trigonometric approximation. Acta Appl. Math. 159, 11–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vijender, N.: Bernstein fractal approximation and fractal full Müntz theorems. Electron. Trans. Numer. Anal. 51, 1–14 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Verma, S., Viswanathan, P.: A fractalization of rational trigonometric functions. Mediterr. J. Math. 17(3), 1–23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the anonymous reviewers and editor for their constructive comments and suggestions, which helped us to improve the manuscript considerably.

Funding

The work of the first author (SC) is financially supported by the CSIR, India, with fellowship number 09/1058(0012)/2018-EMR-I. The third author (SV) thanks Prof. Syed Abbas for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Abbas, S. & Verma, S. Bernstein super fractal interpolation function for countable data systems. Numer Algor 92, 2457–2481 (2023). https://doi.org/10.1007/s11075-022-01398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01398-5

Keywords

Mathematics Subject Classification (2010)

Navigation