Skip to main content
Log in

A Chebyshev-Markov-Stieltjes separation type theorem for classical Romberg quadrature

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A classical theorem due to Chebyshev, Markov and Stieltjes states that the Gauss-Legendre quadrature of a generic function f is a Riemann sum of f. In this note we prove an analogue of this theorem for Romberg quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

Notes

  1. All of the integration rules we shall discuss here satisfy \(\sum \limits _{i = 0}^{n_{\tau }} w_{\tau ,i} \ = \ b-a\), i.e., \(I_{\tau }\) integrates the constant function \(f \equiv 1\) exactly.

  2. Note that, when m is odd, \(\alpha _{1,1,m,m} \ = \ \frac{4}{3} \left( \alpha _{0,{0},m,0} + \alpha _{0,{0},m,m} \right) \ = \ \frac{4}{3}\left( \frac{1}{2} + \frac{1}{2} \right) \ = \ \frac{4}{3} \ =\ \Gamma _{1}.\)

References

  1. Bauer, F.L., Rutishauser, H., Stiefel, E.: New aspects in numerical quadrature, Proc. Sympos. Appl. Maths., Vol. 15, Amer. Math. Soc., Providence, RI, pp. 199–218 (1963)

  2. Brass, H., Fisher, J.W.: Error bounds in Romberg quadrature. Numer. Math. 82, 389–408 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezinski, C.: Convergence acceleration during the 20th century. J. Comp. Appl. Math. 122, 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bulirsch, R.: Bemerkungen zur Romberg-Integration. Numer. Math. 6, 6–16 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camargo, A.: A divergent sequence of Romberg integrals. Results Math. 75, 11 (2020). https://doi.org/10.1007/s00025-019-1140-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Camargo A.: Rounding error analysis of divided differences schemes: Newton’s divided differences, Neville’s algorithm, Richardson extrapolation, Romberg quadrature, etc., Numer. Algorithms 85, 591–606 (2020)

  7. Dahlquist, G., Bjöck, A.: Numerical Methods in Scientific Computing I. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  8. Fejér, L.: Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z. 37(1), 287–309 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huybrechs, D.: Stable high-order quadrature rules with equidistant points. J. Comp. Appl. Math. 231, 933–947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Imhof, J.P.: On the method of numerical integration of Clenshaw and Curtis. Numer. Math. 5, 138–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klein, G., Berrut, J.P.: Linear barycentric rational quadrature. BIT 52(2), 407–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Locher, F.: Norm bounds of quadrature processes. SIAM J. Num. Anal. 10(4), 553–558 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Notaris, S.: Interpolatory quadrature formulae with Chebyshev abscissae. J. Comp. Appl. Math. 133, 507–517 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ouspensky, P.J.: Sur les valeurs asymptotiques des coefficients de Cotes. Bull. Amer. Math. Soc. 31(3–4), 145–156 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pólya, G.: Über die Konvergenz von Quadraturverfahren. Math. Z. 37(1), 264–286 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  16. Szegö, G.: Orthogonal Polynomials. AMS Colloquium Publications v, XVIII (1931)

  17. Wilson, M.W.: Necessary and sufficient conditions for equidistant quadrature formula. SIAM J. Num. Anal. 7(1), 134–141 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wilson, M.W.: Discrete least squares and quadrature formulas. Math. Comp. 24(110), 271–282 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their helpful comments and constructive criticisms concerning earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Pierro de Camargo.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Camargo, A.P. A Chebyshev-Markov-Stieltjes separation type theorem for classical Romberg quadrature. Numer Algor 92, 2365–2376 (2023). https://doi.org/10.1007/s11075-022-01393-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01393-w

Keywords

Navigation