Skip to main content
Log in

The conservative characteristic difference method and analysis for solving two-sided space-fractional advection-diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze the mass-conservative characteristic finite difference method for solving two-sided space-fractional advection-diffusion equation. The predecessor numerical solutions are firstly computed by using the piecewise parabola method (PPM) which preserves the local mass conservation. Then, we solve the equations with the shifted Grünwald-Letnikov approximations by the splitting implicit characteristic difference scheme. By some auxiliary lemmas, we prove strictly that our schemes I and II are stable under the condition Δt = Ox2) based on the choice of the weight coefficient in L2-norm, respectively. Their error estimates are given and we prove our scheme I is of first-order and scheme II is second-order convergence in space, respectively. Due to the characteristic structure of the coefficient matrix, an efficient fast iterative algorithm is applied to our schemes with the computational complexity of only O(\(N \log N\)). Numerical experiments are used to verify our one-dimensional and two-dimensional theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002)

    Article  Google Scholar 

  2. Berkowitz, B., Scher, H., Silliman, S.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36, 149–158 (2000)

    Article  Google Scholar 

  3. Bromly, M., Hinz, C.: Non-fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. 40, W07402 (2004)

    Article  Google Scholar 

  4. Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cushman, J., Ginn, T.: Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resour. Res. 36, 3763–3766 (2000)

    Article  Google Scholar 

  6. Celia, M., Russell, T., Herrera, I., Ewing, R.: An Euler-Lagrangian localized adjoint method for the advection-diffusion equations. Adv. Water Resour. 13, 187–206 (1990)

    Article  Google Scholar 

  7. Colella, P., Woodward, P.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  MATH  Google Scholar 

  8. Dahle, H., Ewing, R., Russell, T.: Eulerian-lagrangian localized adjoint methods for a nonlinear advection-diffusion equation. Comput. Methods Appl. Mech. Engrg. 122, 223–250 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dawson, C., Russell, T., Wheeler, M.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26, 1487–1512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 41, 204–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, W., Li, B., Tian, W., Zhang, P.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model Simul. 16, 125–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, W., Wang, X., Zhang, P.: Anisotropic nonlocal diffusion operators for normal and anomalous dynamics. Multiscale Model Simul. 18, 415–443 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Douglas, J. Jr, Russell, T.: Numerical solution for convection-dominated diffusion problem based on combining the method of characteristics with finite element or differncen procedures. SIAM J. Numer Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, L., Zhuang, P., Liu, F., Turner, I., Gu, Y.: Finite element method for space-time fractional diffusion equation. Numer. Algorithm 72, 749–767 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, L., Zhuang, P., Liu, F., Turner, I., Ahh, V., Li, J.: A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. Appl. Math. Comput. 73, 1155–1171 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, K., Liang, D.: The conservative characteristic FD methods for atmospheric aerosol transport problems. J. Comput. Phys. 305, 494–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fu, K., Liang, D.: The time second order mass conservative characteristic FDM for advection-diffusion equations in high dimensions. J. Sci. Comput. 73, 26–49 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, K., Liang, D.: A mass-conservative temporal second order and spatial fourth order characteristic finite volume method for atmosphertic pollution advection diffusion problems. SIAM J. Sci. Comput. 41, 1178–1210 (2019)

    Article  MathSciNet  Google Scholar 

  21. Fu, H., Liu, H., Wang, H.: A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation. J. Comput. Phys. 388, 316–334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jia, J., Wang, H.: A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J. Comput. Phys. 310, 63–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kosakowski, G., Berkowitz, B., Scher, H.: Analysis of field observations of tracer transport in a fractured till. J. Contam. Hydrol. 47, 29–51 (2001)

    Article  Google Scholar 

  25. Liang, D., Zhou, Z.: The conservative splitting domain decomposition method for multicomponent contamination flows in porous media. J. Comput. Phys. 108974, 400 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Liu, F., Zhuang, P., Anh, V., et al.: Stability and convergence of the difference methods for the space-time fractional advection-difusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mackenzie, J., Rowlatt, C., Insall, R.: A conservative finite element ALE scheme for mass-conservative reaction-diffusion equations on evolving two-dimensional domains. SIAM J. Sci. Comput. 43, B132–B166 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractionaladvection-dispersion flow equations. J. Comput. Appl. Math. 72, 65–77 (2004)

    Article  MATH  Google Scholar 

  30. Nie, D., Sun, J., Deng, W.: Numerical algorithm for the model describing anomalous diffusion in expanding media. ESAIM Mathematical Modelling and Numerical Analysis 54, 2265–2294 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pachepsky, Y., Benson, D., Rawls, W.: Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation. Soil Sci. Soc. Am. J. 64, 1234–1243 (2000)

    Article  Google Scholar 

  32. Pang, L., Hunt, B.: Solutions and verification of a scale-dependent dispersion model. J. Contam. Hydrol. 53, 21–39 (2001)

    Article  Google Scholar 

  33. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rui, H., Tabata, M.: A mass-conservative characteristic finite element scheme for convection-diffusion problems. J. Sci. Comput. 43, 416–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simmons, A., Yang, Q., Moroney, T.: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J. Comput. Phys. 335, 747–759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for non-Brownian functionals. Phys. Rev. Lett. 190201, 103 (2009)

    MathSciNet  Google Scholar 

  38. Wang, H., Wang, K.: An O(\(N \log ^{2} N\)) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34, 810–816 (2011)

    Article  Google Scholar 

  40. Wu, X., Deng, W., Barkai, E.: Tempered fractional Feynman-Kac equation: theory and examples. Phys. Rev. E 032151, 93 (2016)

    MathSciNet  Google Scholar 

  41. Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vong, S., Lyu, P., Chen, X., et al.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer. Algorithms 72, 195–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, X., Crawford, J., Deeks, L., Stutter, M., Bengough, A., Young, I.: A mass balance based numerical method for the fractional advection-dispersion equation: theory and application. Water Resour. Res. 41, W07029 (2005)

    Article  Google Scholar 

  44. Zhang, R., Huang, K., Xiang, J.: Solute movement through homogeneous and heterogeneous soil columns. Adv. Water Resour. 17, 317–324 (1994)

    Article  Google Scholar 

  45. Zhang, X., Lv, M., Crawford, J., Young, I.: The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives. Adv. Water Resour. 30, 1205–1217 (2007)

    Article  Google Scholar 

  46. Zhang, Y., Martin, R. L., Chen, D., et al.: A subordinated advection model for uniform bed load transport from local to regional scales. Journal of Geophysical Research: Earth Surface 119, 2711–2729 (2014)

    Article  Google Scholar 

  47. Zhao, Y., Gu, X., Li, M., et al.: Preconditioners for all-at-once system from the fractional mobile/immobile advection-diffusion model. J. Appl. Math. Comput. 65, 669–691 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported partially by the National Natural Science Foundation of China (Grant No. 61703250), Natural Science Foundation of Shandong Government (Grant No. ZR2021MA002) and Shandong Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongguo Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, T., Zhou, Z., Pan, H. et al. The conservative characteristic difference method and analysis for solving two-sided space-fractional advection-diffusion equations. Numer Algor 92, 1723–1755 (2023). https://doi.org/10.1007/s11075-022-01363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01363-2

Keywords

Navigation