Skip to main content
Log in

Integrability and geometry of the Wynn recurrence

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We show that the Wynn recurrence (the missing identity of Frobenius of the Padé approximation theory) can be incorporated into the theory of integrable systems as a reduction of the discrete Schwarzian Kadomtsev–Petviashvili equation. This allows, in particular, to present the geometric meaning of the recurrence as a construction of the appropriately constrained quadrangular set of points. The interpretation is valid for a projective line over arbitrary skew field what motivates to consider non-commutative Padé theory. We transfer the corresponding elements, including the Frobenius identities, to the non-commutative level using the quasideterminants. Using an example of the characteristic series of the Fibonacci language we present an application of the theory to the regular languages. We introduce the non-commutative version of the discrete-time Toda lattice equations together with their integrability structure. Finally, we discuss application of the Wynn recurrence in a different context of the geometric theory of discrete analytic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We thank Jarosław Kosiorek for pointing us such a geometric interpretation of the construction.

References

  1. Baker Jr., G. A.: Essentials ofPadé approximants. Academic Press, New York (1975)

    Google Scholar 

  2. Berezansky, Y. M.: The integration of the semi-infinite Toda chain by means of inverse spectral problems. Rep. Math. Phys 24, 21–47 (1986)

    MathSciNet  Google Scholar 

  3. Berstel, J., Reutenauer, Ch.: Noncommutative rational series with applications. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  4. Białecki, M.: Integrable 1D Toda cellular automata. J. Nonlin. Math. Phys 12(2 Suppl.), 28–35 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Białecki, M., Doliwa, A: Algebro-geometric solution of the discrete KP equation over a finite field out of a hyperelliptic curve. Commun. Math. Phys 253, 157–170 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Bobenko, A. I., Hoffmann, T.: Hexagonal circle patterns and integrable systems: patterns with constant angles. Duke Math. J 116, 525–566 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Bobenko, A. I., Pinkall, U.: Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Diff. Geom 43, 527–611 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Bobenko, A. I., Pinkall, U.: Discrete isothermic surfaces. J. reine angew. Math 475, 187–208 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Bobenko, A. I., Pinkall, U.: Discretization of surfaces and integrable systems Oxford Lecture Ser Math. Appl., vol. 16, pp 3–58. Oxford Univ. Press, New York (1999)

  10. Bobenko, A. I., Suris, Y. B.: Discrete differential geometry: integrable structure. AMS, Providence (2009)

    MATH  Google Scholar 

  11. Bobenko, A. I., Suris, Y. B.: Integrable non-commutative equations on quad-graphs. The consistency approach. Lett. Math. Phys 61, 241–254 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Bogdanov, L. V., Konopelchenko, B. G.: Analytic-bilinear approach to integrable hierarchies II. Multicomponent KP and 2D Toda hierarchies. J. Math. Phys 39, 4701–4728 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Continued fractions and Padé approximants. In: Brezinski, C (ed.) . Elsevier, Amsterdam (1990)

  14. Brezinski, C.: History of continued fractions and Padé approximants. Springer, New York (1991)

    MATH  Google Scholar 

  15. Brezinski, C.: Convergence acceleration during th 20th century. J. Comput. Appl. Math. 122, 1–21 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Brezinski, C., Redivo-Zaglia, M.: Extrapolation and rational approximation. Springer, Cham (2020)

    MATH  Google Scholar 

  17. Brezinski, C., He, Y., Hu, X.-B., Redivo-Zaglia, M., Sun, J.-Q.: Multistep ε-algorithm, Shanks’ Transformation, and the Lotka–Volterra system by Hirota’s method. Math. Comput 81, 1527–1549 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Chang, X.-K., He, Y., Hu, X.-B., Li, S.-H.: A new integrable convergence acceleration algorithm for computing Brezinski–Durbin–Redivo–Zaglia’s sequence transformation via pfaffians. Numer. Algor 78, 87–106 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Chang, X.-K., He, Y., Hu, X.-B., Li, S.-H.: Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Commun. Math. Phys 364, 1069–1119 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Chudnovsky, D. V., Chudnovsky, G. V.: Padé and rational approximations of functions to systems and their arithmetic applications. In: Chudnovsky, D. V., Chudnovsky, G. V., Cohn, H., Nathanson, M. B. (eds.) Number theory: a seminar held at the Graduate School and University Center of the City University of New York 1982, Lec. Notes Math., vol. 1052, pp 37–84. Springer (1984)

  21. Cieśliński, J., Doliwa, A., Santini, P. M.: The integrable discrete analogues of orthogonal coordinate systems are multidimensional circular lattices. Phys. Lett. A 235, 480–488 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Cohn, P. M.: Skew fields. Theory of general division rings. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  23. Coxeter, H. S. M.: Projective geometry. Springer, New York (1987)

    MATH  Google Scholar 

  24. Coxeter, H. S. M., Greitzer, S. L.: Geometry revisited. Mathematical Association of America, Washington (1967)

  25. Nonlinear numerical methods and rational approximation. In: Cuyt, A. (ed.) Proceedings of the conference held at the University of Antwerp, Wilrijk, April 20–24, 1987. Mathematics and its Applications, vol. 43. D. Reidel Publishing Co., Dordrecht (1988)

  26. Dimakis, A., Müller-Hoissen, F.: An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions. J. Phys. A 38, 5453–5505 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Doliwa, A.: Geometric discretisation of the Toda system. Phys. Lett. A 234, 187–192 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Doliwa, A.: Desargues maps and the Hirota–Miwa equation. Proc. R. Soc. A 466, 1177–1200 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Doliwa, A.: The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system. Phys. Lett. A 375, 1219–1224 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Doliwa, A.: Desargues maps and their reductions. In: Ma, W.X., Kaup, D. (eds.) Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, vol. 1562, pp 30–42. AIP Publishing (2013)

  31. Doliwa, A.: Non-commutative double-sided continued fractions. J. Phys. A: Math. Theor 53(36), 354001 (2020)

    MathSciNet  Google Scholar 

  32. Doliwa, A., Kashaev, R. M.: Non-commutative bi-rational maps satisfying Zamolodchikov equation, and Desargues lattices. J. Math. Phys 61(9), 092704 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Doliwa, A., Kosiorek, J.: Quadrangular sets in projective line and in Moebius space, and geometric interpretation of the non-commutative discrete Schwarzian Kadomtsev-Petviashvili equation. In: Nijhoff, F., Shi, Y., Zhang, D. (eds.) Asymptotic, algebraic and geometric aspects of integrable systems, Springer Proceedings in Mathematics & Statistics, vol. 338, pp 1–15. Springer (2020)

  34. Doliwa, A., Lin, R. L.: Discrete KP equation with self-consistent sources. Phys. Lett. A 378, 1925–1931 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Doliwa, A., Noumi, M.: The Coxeter relations and KP map in non-commuting symbols. Lett. Math. Phys 110, 2743–2762 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Doliwa, A., Santini, P. M.: Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy. J. Math. Phys 36, 1259–1273 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Doliwa, A., Santini, P. M.: Multidimensional quadrilateral lattices are integrable. Phys. Lett. A 233, 365–372 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Doliwa, A., Siemaszko, A.: Hermite–Padé approximation and integrability. arXiv:2202.06829

  39. Draux, A.: The Padé approximants in a non-commutative algebra and their applications. In: Werner, H., Bünger, H. J. (eds.) Padé approximation and its applications Bad Honnef 1983, Lecture Notes in Mathematics 1071. Springer, Berlin, Heidelberg (1984)

  40. Draux, A.: Formal orthogonal polynomials and Pade approximants in a non-commutative algebra. In: Fuhrmann, P. A. (ed.) Mathematical theory of networks and systems, Lecture Notes in Control and Information Sciences, vol. 58. Springer, Berlin, Heidelberg (1984)

  41. Draux, A.: Convergence of Padé approximants in a non-commutative algebra. In: Gómez-Fernandez, J.A. et al. (eds.) Approximation and optimization, Lect. Notes in Math., vol. 1354. Springer, Berlin, Heidelberg (1988)

  42. Etingof, P., Gelfand, I., Retakh, V.: Factorization of differential operators, quasideterminants, and nonabelian Toda field equations. Math. Res. Lett. 4, 413–42 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Gelfand, I., Retakh, V.: A Theory of noncommutative determinants and characteristic functions of graphs. Funct. Anal. Appl 26, 1–20 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R. L.: Quasideterminants. Adv. Math 193, 56–141 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Non-commutative symmetric functions. Adv. in Math. 112, 218–348 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Gilson, C. R., Nimmo, J. J. C.: On a direct approach to quasideterminant solutions of a noncommutative KP equation. J. Phys. A 40, 3839–3850 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Gragg, W. B.: The Padé table and its relation to certain algorithms of numerical analysis. SIAM Review 14, 1–62 (1972)

    MathSciNet  MATH  Google Scholar 

  48. Grammaticos, B., Ramani, A., Papageorgiou, V. G.: Do integrable mappings have the Painlevé property? Phys. Rev. Lett 67, 1825–1828 (1991)

    MathSciNet  MATH  Google Scholar 

  49. He, Y., Hu, X.-B., Sun, J.-Q., Weniger, E. J.: Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J. Sci. Comput. 33, 1234–1245 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Herzer, A.: Chain Geometries. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp 781–842. Elsevier (1995)

  51. Hietarinta, J., Joshi, N., Nijhoff, F. W.: Discrete systems and integrability. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  52. Hirota, R.: Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Japan 43, 2074–2078 (1977)

    MathSciNet  MATH  Google Scholar 

  53. Hirota, R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn 50, 3785–3791 (1981)

    MathSciNet  Google Scholar 

  54. Hirota, R., Tsujimoto, S., Imai, T.: Difference scheme of soliton equations. In: Christiansen, P. L., Eilbeck, P. L., Parmentier, R. D. (eds.) Future directions of nonlinear dynamics in physical and biological systems, pp 7–15. Springer (1993)

  55. Ismail, M. E. H.: Classical and quantum orthogonal polynomials in one variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005)

  56. Kels, A. P.: Interaction-round-a-face and consistency-around-a-face-centered-cube. J. Math. Phys 62, 033509 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl 88, 141–164 (1936)

    MATH  Google Scholar 

  58. Kondo, K.: Sato-theoretic construction of solutions to noncommutative integrable systems. Phys. Lett. A 375, 488–492 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Konopelchenko, B. G., Schief, W. K.: Menelaus’ theorem, Clifford configuration and inversive geometry of the Schwarzian KP hierarchy. J. Phys. A: Math. Gen 35, 6125–6144 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Konstantinou-Rizos, S., Mikhailov, A. V., Xenitidis, P.: Reduction groups and related integrable difference systems of nonlinear Schrödinger type. J. Math. Phys 56, 082701 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Krichever, I., Lipan, O., Wiegmann, P., Zabrodin, A.: Quantum integrable models and discrete classical Hirota equations. Commun. Math. Phys 188, 267–304 (1997)

    MathSciNet  MATH  Google Scholar 

  62. Kuniba, A., Nakanishi, T., Suzuki, J.: T-systems and Y -systems in integrable systems. J. Phys. A: Math. Theor 44(10), 103001 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Kupershmidt, B.A.: KP or mKP noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  64. Li, S.-H.: Matrix orthogonal polynomials, non-abelian Toda lattice and Bäcklund transformations. arXiv:2109.00671

  65. Li, C. X., Nimmo, J.J.C.: Quasideterminant solutions of non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation. Proc. R. Soc. A 464, 951–966 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Mal’cev, A. I.: On the embedding of group algebras. Dokl. Akad. Nauk SSSR 60, 1499–1501 (1948). (in Russian)

    Google Scholar 

  67. Miwa, T.: On Hirota’s difference equations. Proc. Japan Acad 58, 9–12 (1982)

    MathSciNet  MATH  Google Scholar 

  68. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential — an integrable system. In: Dynamical Systems, Theory and Applications, Lecture Notes in Physics, vol. 38, pp 467–497. Springer, Berlin (1975)

  69. Nagai, A., Tokihiro, T., Satsuma, J.: The Toda molecule aquation and the ε-algorithm. Mathematics of Computation 67, 1565–1575 (1998)

    MathSciNet  MATH  Google Scholar 

  70. Nagao, H., Yamada, Y.: Padé methods for Painlevé equations. Springer Nature Singapore Pte Ltd, Singapore (2021)

    MATH  Google Scholar 

  71. Neumann, B. H.: On ordered division rings. Trans. Amer. Math. Soc 66, 202–252 (1949)

    MathSciNet  MATH  Google Scholar 

  72. Nijhoff, F. W., Capel, H. W.: The direct linearization approach to hierarchies of integrable PDEs in 2 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies. Inverse Problems 6, 567–590 (1990)

    MathSciNet  MATH  Google Scholar 

  73. Nimmo, J. J. C.: On a non-Abelian Hirota-Miwa equation. J. Phys. A: Math. Gen 39, 5053–5065 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Papageorgiou, V., Grammaticos, B., Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett. Math. Phys 34, 91–101 (1995)

    MathSciNet  MATH  Google Scholar 

  75. Papageorgiou, V., Grammaticos, B., Ramani, A.: Integrable difference equations and numerical analysis algorithms. In: Levi, D., Vinet, L., Winternitz, P. (eds.) Symmetries and Integrability of Difference Equations, CRM Proceedings and Lecture Notes, vol. 9, pp 269–280. AMS, Providence RI (1996)

  76. Retakh, V., Rubtsov, V.: Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation. J. Phys. A: Math. Theor 43, 505204 (2010)

    MATH  Google Scholar 

  77. Sakarovitch, J.: Elements of automata theory. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  78. Salomaa, A., Soittola, M: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978)

    MATH  Google Scholar 

  79. Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke Math. J 86, 347–389 (1997)

    MathSciNet  MATH  Google Scholar 

  80. Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math 83, 333–382 (1986)

    MathSciNet  MATH  Google Scholar 

  81. Stephenson, K.: Introduction to to circle packing. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  82. Thurston, W. P.: The finite Riemann mapping theorem, Invited address. International Symposium in Celebration of the Proof of the Bieberbach Conjecture, Purdue University (1985)

  83. Toda, M.: Waves in nonlinear lattice. Progr. Theoret. Phys. Suppl 45, 174–200 (1970)

    Google Scholar 

  84. Wynn, P.: Continued fractions whose coefficients obey a non-commutative law of multiplication. Arch. Rational Mech. Anal 12, 273–312 (1963)

    MathSciNet  MATH  Google Scholar 

  85. Wynn, P.: Upon systems of recursions which obtain among the quotients of the Padé table. Numerische Mathematik 8, 264–269 (1966)

    MathSciNet  MATH  Google Scholar 

  86. Zabrodin, A. V.: Hirota’s difference equations. Theor. Math. Phys 113, 1347–1392 (1997)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive comments, which allowed for the improvement of the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Doliwa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doliwa, A., Siemaszko, A. Integrability and geometry of the Wynn recurrence. Numer Algor 92, 571–596 (2023). https://doi.org/10.1007/s11075-022-01344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01344-5

Keywords

Mathematics Subject Classification (2010)

Navigation