Skip to main content
Log in

Subspace method for the estimation of large-scale structured real stability radius

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the autonomous dynamical system \(x^{\prime } = Ax,\) with \(A\in {\mathbb {R}}^{n\times n}.\) This linear dynamical system is asymptotically stable if all of the eigenvalues of A lie in the open left-half of the complex plane. In this case, the matrix A is said to be Hurwitz stable or shortly a stable matrix. In practice, the stability of a system can be violated because of perturbations such as modeling errors. In such cases, one deals with the robust stability of the system rather than its stability. The system above is said to be robustly stable if the system, as well as all of its perturbations from a certain perturbation class, are stable. To measure the robustness of the system subject to perturbations, a quantity of interest is the stability radius or in other words the distance to instability. In this paper, we focus on the estimation of the structured real stability radius for large-scale systems. We propose a subspace framework to estimate the structured real stability radius and prove that our new method converges at a quadratic rate in theory. Our method benefits from a one-sided interpolatory model order reduction technique, in the sense that the left and the right subspaces are the same. The quadratic convergence of the method is due to the certain Hermite interpolation properties between the full and reduced problems. The proposed framework estimates the structured real stability radius for large-scale systems efficiently. The efficiency of the method is demonstrated on several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main_Page

  2. available at https://www.cs.ox.ac.uk/pseudospectra/eigtool/

  3. available at http://www.complib.de

References

  1. Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: Large-scale computation of \({\mathscr{L}}_{\infty }\)-norms by a greedy subspace method. SIAM J. Matrix Anal. Appl. 38(4), 1496–1516 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliyev, N., Benner, P., Mengi, E., Voigt, M.: A subspace framework for \({\mathscr{H}}_{\infty }\)-norm minimization. SIAM J. Matrix Anal. Appl. 41(2), 928–956 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beattie, C., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Syst. Control Lett. 58(3), 225–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \({L}_{\infty }\)-norm. Syst. Control Lett. 15(1), 1–7 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruinsma, N.A., Steinbuch, M.: A fast algorithm to compute the \({H}_{\infty }\)-norm of a transfer function matrix. Syst. Control Lett. 14(4), 287–293 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N.K.: Numerical computation of an analytic singular value decomposition of a matrix valued function. Numer. Math. 60(1), 1–39 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byers, R.: A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J. Sci. Stat. Comp. 9(5), 875–881 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory: a Convex Approach. Springer (2000)

  9. Freitag, M.A., Spence, A.: A new approach for calculating the real stability radius BIT Numer. Math. 54, 381–400 (2014)

    MATH  Google Scholar 

  10. Guglielmi, N., Gürbüzbalaban, M., Mitchell, T., Overton, M.L.: Approximating the real structuredl stability radius with frobenius bounded norm perturbations. SIAM J. Matrix Anal. Appl. 38(4), 1323–1353 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J. Matrix Anal. Appl. 34(1), 40–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gugliemi, N., Manetta, M.: Approximating real stability radii. IMA J. Numer. Anal. 35(3), 1–24 (2014)

    MathSciNet  Google Scholar 

  13. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7(1), 1–10 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic riccati equation. Syst. Control Lett. 8(2), 105–113 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinrichsen, D., Pritchard, A.J.: Real and complex stability radii: a survey. In: Control of Uncertain Systems: Proceedings of an International Workshop. pp. 119–162, Bremen, West Germany, June (1989)

  16. Kangal, F., Meerbergen, K., Mengi, E., Michiels, W.: A subspace method for large scale eigenvalue optimization. SIAM J. Matrix Anal. Appl. 39 (1), 48–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kangal, F., Mengi, E.: Non-smooth algorithms for minimizing the largest eigenvalue with applications to inner numerical radius. IMA J. Numer. Anal. 40(4), 2342–2376 (2019)

    Article  MATH  Google Scholar 

  18. Katewa, V., Pasqualletti, F.: On the real stability radius of sparse systems. Automatica 113, 377–387 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lancaster, P.: On eigenvalues of matrices dependent on a parameter. Numer. Math. 6, 377–387 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, D., Vandereycken, B.: Criss-cross type algorithms for computing the real pseudospectral abscissa. SIAM J. Matrix Anal. Appl. 38(3), 891–923 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mengi, E.: Large-scale and global maximization of the distance to instability. SIAM J. Matrix Anal. Appl. 39(4), 1776–1809 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qiu, L., Berhnhardsson, B., Rantzer, A., Davison, E.J., Young, P.M., Doyle, J.C.: A formula for computation of real stability radius. Automatica. 31(6), 879–890 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rostami, M.W.: New algorithms for computing the real structured pseudospectral abscissa and the real stability radius of large and sparse matrices. SIAM J. Sci. Comput. 37(5), 447–471 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sreedhar, V., Dooren, P. V., Tits, A.L.: A fast algorithm to compute the real structured stability radius. Internat. Ser. Numer. Math. 121, 219–230 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Trefethen, L.N., Embree, M.: Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princetion University Press, Princeton, NJ USA (2005)

  26. Van Loan, C.F.: How near is a stable matrix to an unstable matrix? Contemporary Math. 47, 465–477 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to two anonymous reviewers and Emre Mengi for their invaluable feedback.

Funding

This work was supported by OP RDE, project no. CZ.02.2.69/0.0/0.0/18_053/0016976. International mobility of research, technical and administrative staff at Charles University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicat Aliyev.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Software

The MATLAB implementation of our algorithm together with test data is publicly available under the https://doi.org/10.5281/zenodo.5837634.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliyev, N. Subspace method for the estimation of large-scale structured real stability radius. Numer Algor 92, 1289–1310 (2023). https://doi.org/10.1007/s11075-022-01340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01340-9

Keywords

Navigation