Skip to main content
Log in

Acceleration of sequences with transformations involving hypergeometric functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce a novel class of non-linear transformations of sequences that can accelerate both linear and logarithmic convergence and perform the summation of divergent series. Those transformations naturally arise when the ratio of successive forward differences of the original sequence are approximated by rational functions. The transformed sequences are thus expressible in terms of generalized hypergeometric functions, whose parameters depend on the original sequence. We explicitly derive analytical expressions for the lowest order transformations, present an alternative derivation using continued fractions, investigate convergence and accelerative properties, and derive the kernels of the transformations. The lowest order transformation is equivalent to Aitken’s Δ2 process, while, in the following order, the transformation specialized to logarithmic convergence is equivalent to Lubkin-W transformation. Numerical examples that illustrate the power and limitations of iterations or combinations of hypergeometric transformations are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken, A.C.: On Bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinb. 46, 289–305 (1927)

    Article  MATH  Google Scholar 

  2. Arteca, G.A., Fernández, F.M., Castro, E.A.: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics. Springer, Berlin (1990)

    Book  Google Scholar 

  3. Bateman, H.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)

    Google Scholar 

  4. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, Singapore (1987)

    MATH  Google Scholar 

  5. Bender, C.M., Wu, T.T.: Anharmonic oscillator. Phys. Rev. 184, 1231 (1969)

    Article  MathSciNet  Google Scholar 

  6. Brezinski, C.: Accélération de suites à convergence logarithmique. CR Acad. Sci. Paris 273A, 727–730 (1971)

    MATH  Google Scholar 

  7. Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1–21 (2000). Numerical Analysis in the 20th Century Vol. II:Interpolation and Extrapolation

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezinski, C., Redivo-Zaglia, M.: The genesis and early developments of Aitken’s process, Shanks’ transformation, the epsilon—algorithm, and related fixed point methods. Numer. Algorithms 80, 11–133 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caliceti, E., Meyer-Hermann, M., Ribeca, P., Surzhykov, A., Jentschura, U.D.: From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep. 446, 1–96 (2007)

    Article  MathSciNet  Google Scholar 

  10. Chang, X.K., He, Y., Hu, X.B., Sun, J.Q., Weniger, E.J.: Construction of new generalizations of Wynn’s epsilon and rho algorithm by solving finite difference equations in the transformation order. Numer. Algorithms 83, 593–627 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordellier, F.: Caractérisation des suites que la première étape du 𝜃-algorithme transforme en suites constantes. C.R. Acad. Sci. Paris Ser. A 284, 389–392 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Delahaye, J.P., Germain-Bonne, B.: The set of logarithmically convergent sequences cannot be accelerated. SIAM J. Numer. Anal. 19, 840–844 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drummond, J.E.: The anharmonic oscillator: complex eigenvalues for the ground state with negative quartic or cubic energy distortion. J. Phys. A Math. Gen. 15, 2321 (1982)

    Article  Google Scholar 

  14. Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grotendorst, J., Weniger, E.J., Steinborn, E.O.: Efficient evaluation of infinite-series representations for overlap, two-center nuclear attraction, and coulomb integrals using nonlinear convergence accelerators. Phys. Rev. A 33, 3706 (1986)

    Article  MathSciNet  Google Scholar 

  16. Hildebrand, B.F.: Introduction to Numerical Analysis, 2nd edn. McGraw-Hill, New York (1974)

    Google Scholar 

  17. Jonquière, A.: Note sur la série \({\sum }_{n= 1}^{\infty } \frac {x^{n}}{n^{s}}\). Bull. de la Soc. Math. de France 17, 142–152 (1889)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Guillou, J.C., Zinn-Justin, J.: Large-Order Behaviour of Perturbation Theory. Elsevier (2012)

  19. Levin, D.: Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. 3, 371–388 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lubkin, S.: A method of summing infinite series. J. Res. Nat. Bur. Standards 48, 228–254 (1952)

    Article  MathSciNet  Google Scholar 

  21. Mera, H., Pedersen, T.G., Nikolić, B.K.: Nonperturbative quantum physics from low-order perturbation theory. Phys. Rev. Lett. 143001, 115 (2015)

    Google Scholar 

  22. Negele, J.W., Orland, H.: Quantum Many-Particle Systems Perseus Books (1998)

  23. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press (2010)

  24. Osada, N.: A convergence acceleration method for some logarithmically convergent sequences. SIAM J. Numer. Anal. 27, 178–189 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockett, A.M., Szüsz, P.: Continued Fractions. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  26. Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge UK (2003)

    Book  MATH  Google Scholar 

  28. Michael Trott: The Mathematica Guidebook for Symbolics. Springer Science & Business Media (2007)

  29. Wall, H.S.: Analytic Theory of Continued Fractions. D.van Nostrand, New York (1948)

    MATH  Google Scholar 

  30. Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189–371 (1989)

    Article  Google Scholar 

  31. Weniger, E.J.: On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Commun. 64, 19–45 (1991)

    Article  MathSciNet  Google Scholar 

  32. Weniger, E.J., Čížek, J., Vinette, F.: The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations. J. Math. Phys. 34(2), 571–609 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wynn, P.: On a device for computing the em(Sn) transformation. Mathematical Tables and Other Aids to Computation 10, 91–96 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wynn, P.: On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Math. Proc. Camb. Philos. Soc. 52(4), 663–671 (1956)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Claude Brezinski and the anonymous reviewers for invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Tristão Pepino.

Ethics declarations

This research did not receive support from any organization. The author declares that he has no conflict of interest. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepino, R.T. Acceleration of sequences with transformations involving hypergeometric functions. Numer Algor 92, 893–915 (2023). https://doi.org/10.1007/s11075-022-01334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01334-7

Keywords

Navigation