Skip to main content
Log in

A low-rank solution method for Riccati equations with indefinite quadratic terms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Algebraic Riccati equations with indefinite quadratic terms play an important role in applications related to robust controller design. While there are many established approaches to solve these in case of small-scale dense coefficients, there is no approach available to compute solutions in the large-scale sparse setting. In this paper, we develop an iterative method to compute low-rank approximations of stabilizing solutions of large-scale sparse continuous-time algebraic Riccati equations with indefinite quadratic terms. We test the developed approach for dense examples in comparison to other established matrix equation solvers, and investigate the applicability and performance in large-scale sparse examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson, B.D.O., Vongpanitlerd, B.: Network Analysis and Synthesis: A Modern Systems Approach. Networks Series. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  2. Arnold, W.F., Laub, A.J.: Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72(12), 1746–1754 (1984). https://doi.org/10.1109/PROC.1984.13083

    Article  Google Scholar 

  3. Bänsch, E., Benner, P., Saak, J., Weichelt, H.K.: Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows. SIAM J. Sci. Comput. 37(2), A832–A858 (2015). https://doi.org/10.1137/140980016

    Article  MathSciNet  MATH  Google Scholar 

  4. Başar, T., Moon, J.: Riccati equations in Nash and Stackelberg differential and dynamic games. IFAC-Pap. 50(1), 9547–9554 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1625, 20th IFAC World Congress

    Google Scholar 

  5. Benner, P.: Partial Stabilization of Descriptor Systems Using Spectral Projectors. In: Van Dooren, P., Bhattacharyya, S.P., Chan, R. H., Olshevsky, V., Routray, A. (eds.) Numerical Linear Algebra in Signals, Systems and Control, Lect. Notes Electr. Eng. https://doi.org/10.1007/978-94-007-0602-6_3, vol. 80, pp 55–76. Springer, Dodrecht (2011)

  6. Benner, P., Bujanović, Z.: On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces. Linear Algebra Appl. 488, 430–459 (2016). https://doi.org/10.1016/j.laa.2015.09.027https://doi.org/10.1016/j.laa.2015.09.027

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: RADI: A low-rank ADI-type algorithm for large scale algebraic Riccati equations. Numer. Math. 138(2), 301–330 (2018). https://doi.org/10.1007/s00211-017-0907-5https://doi.org/10.1007/s00211-017-0907-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems. SIAM J. Sci. Comput. 42(2), A957–A996 (2020). https://doi.org/10.1137/18M1220960

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Ezzatti, P., Quintana-ortí, E.S., Remó, n, A.: A factored variant of the Newton iteration for the solution of algebrai Riccati equations via the matrix sign function. Numer. Algorithms 66(2), 363–377 (2014). https://doi.org/10.1007/s11075-013-9739-2

  10. Benner, P., Heiland, J.: Equivalence of Riccati-based robust controller design for index-1 descriptor systems and standard plants with feedthrough. In: 2020 European Control Conference (ECC), pp. 402–407, https://doi.org/10.23919/ECC51009.2020.9143771 (2020)

  11. Benner, P., Heiland, J., Werner, S.W.R.: Robust output-feedback stabilization for incompressible flows using low-dimensional \({\mathscr{H}}_{\infty }\)-controllers. Comput. Optim. Appl., https://doi.org/10.1007/s10589-022-00359-xhttps://doi.org/10.1007/s10589-022-00359-x (2022)

  12. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Lin. Alg. Appl. 15(9), 755–777 (2008). https://doi.org/10.1002/nla.622

    Article  MathSciNet  MATH  Google Scholar 

  13. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey. GAMM-Mitt. 36(1), 32–52 (2013). https://doi.org/10.1002/gamm.201310003

    Article  MathSciNet  MATH  Google Scholar 

  14. Benner, P., Stykel, T.: Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal. 52(2), 581–600 (2014). https://doi.org/10.1137/130923993

    Article  MathSciNet  MATH  Google Scholar 

  15. Benner, P., Werner, S.W.R.: Model reduction of descriptor systems with the MORLAB toolbox. IFAC-Pap 51 (2), 547–552 (2018). https://doi.org/10.1016/j.ifacol.2018.03.092, 9th Vienna International Conference on Mathematical Modelling MATHMOD 2018

    Google Scholar 

  16. Benner, P., Werner, S.W.R.: MORLAB – Model Order Reduction LABoratory (version 5.0). https://doi.org/10.5281/zenodo.3332716. https://www.mpi-magdeburg.mpg.de/projects/morlab (2019)

  17. Delfour, M.C.: Linear quadratic differential games: saddle point and Riccati differential equation. SIAM J. Control Optim. 46(2), 750–774 (2007). https://doi.org/10.1137/050639089

    Article  MathSciNet  MATH  Google Scholar 

  18. Freitas, F., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst. 23(3), 1258–1270 (2008). https://doi.org/10.1109/TPWRS.2008.926693https://doi.org/10.1109/TPWRS.2008.926693

    Article  Google Scholar 

  19. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

    Book  MATH  Google Scholar 

  20. Heiland, J., Werner, S.W.R.: Code, data and results for numerical experiments in “Robust output-feedback stabilization for incompressible flows using low-dimensional \({\mathscr{H}}_{\infty }\)-controllers” (version 2.0). https://doi.org/10.5281/zenodo.5532539 (2021)

  21. Heinkenschloss, M., Sorensen, D.C., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30(2), 1038–1063 (2008). https://doi.org/10.1137/070681910

    Article  MathSciNet  MATH  Google Scholar 

  22. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53–62 (2009). {https://etna.math.kent.edu/volumes/2001-2010/vol33/abstract.php}

    MathSciNet  MATH  Google Scholar 

  23. Jonckheere, E.A., Silverman, L.M.: A new set of invariants for linear systems–application to reduced order compensator design. IEEE Trans. Autom. Control 28(10), 953–964 (1983). https://doi.org/10.1109/TAC.1983.1103159

    Article  MathSciNet  MATH  Google Scholar 

  24. Kleinman, D.L.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13(1), 114–115 (1968). https://doi.org/10.1109/TAC.1968.1098829

    Article  Google Scholar 

  25. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany, http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2 (2016)

  26. Lanzon, A., Feng, Y., Anderson, B.D.O.: An Iterative Algorithm to Solve Algebraic Riccati Equations with an Indefinite Quadratic Term. In: 2007 European Control Conference (ECC), pp. 3033–3039. https://doi.org/10.23919/ecc.2007.7068239(2007)

  27. Lanzon, A., Feng, Y., Anderson, B.D.O., Rotkowitz, M.: Computing the positive stabilizing solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method. IEEE Trans. Autom. Control 53(10), 2280–2291 (2008). https://doi.org/10.1109/TAC.2008.2006108

    Article  MathSciNet  MATH  Google Scholar 

  28. Laub, A.J.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 24(6), 913–921 (1979). https://doi.org/10.1109/TAC.1979.1102178

    Article  MathSciNet  MATH  Google Scholar 

  29. Leibfritz, F.: COMPleib: Constrained matrix-optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Tech.-report, University of Trier. http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf (2004)

  30. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002). https://doi.org/10.1137/S0895479801384937

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, Y., Simoncini, V.: A new subspace iteration method for the algebraic Riccati equation. Numer. Linear Algebra Appl. 22(1), 26–47 (2015). https://doi.org/10.1002/nla.1936

    Article  MathSciNet  MATH  Google Scholar 

  32. Locatelli, A.: Optimal Control: An Introduction. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  33. McFarlane, D.C., Glover, K.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, Lect. Notes Control Inf. Sci., vol. 138. Springer, Berlin (1990). https://doi.org/10.1007/BFB0043199https://doi.org/10.1007/BFB0043199

    MATH  Google Scholar 

  34. Möckel, J., Reis, T., Stykel, T.: Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems. Internat. J. Control 84(10), 1627–1643 (2011). https://doi.org/10.1080/00207179.2011.622791https://doi.org/10.1080/00207179.2011.622791

    Article  MathSciNet  MATH  Google Scholar 

  35. Opdenacker, P.C., Jonckheere, E.A.: A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst. 35(2), 184–189 (1988). https://doi.org/10.1109/31.1720

    Article  MathSciNet  MATH  Google Scholar 

  36. Roberts, J.D.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control 32(4), 677–687 (1980). https://doi.org/10.1080/00207178008922881, Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971

    Article  MathSciNet  MATH  Google Scholar 

  37. Saak, J.: Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. Dissertation, Technische Universität Chemnitz, Germany. https://nbn-resolving.org/urn:nbn:de:bsz:ch1-200901642 (2009)

  38. Saak, J, Köhler, M, Benner, P: M-M.E.S.S. – The matrix equations sparse solvers library (version 2.1). https://doi.org/10.5281/zenodo.4719688, https://www.mpi-magdeburg.mpg.de/projects/mess (2021)

  39. Saak, J., Voigt, M.: Model reduction of constrained mechanical systems in M-M.E.S.S. IFAC-Pap 51(2), 661–666 (2018). https://doi.org/10.1016/j.ifacol.2018.03.112, 9th Vienna International Conference on Mathematical Modelling MATHMOD 2018

    Google Scholar 

  40. Sandell, N.: On Newton’s method for Riccati equation solution. IEEE Trans. Autom. Control 19(3), 254–255 (1974). https://doi.org/10.1109/TAC.1974.1100536

    Article  MathSciNet  MATH  Google Scholar 

  41. Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37 (4), 1655–1674 (2016). https://doi.org/10.1137/16M1059382

    Article  MathSciNet  MATH  Google Scholar 

  42. Stillfjord, T.: Singular value decay of operator-valued differential Lyapunov and Riccati equations. SIAM J. Control Optim. 56(5), 3598–3618 (2018). https://doi.org/10.1137/18M1178815

    Article  MathSciNet  MATH  Google Scholar 

  43. Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal. 30, 187–202 (2008). https://etna.math.kent.edu/volumes/2001-2010/vol30/abstract.php

    MathSciNet  MATH  Google Scholar 

  44. Varga, A.: On computing high accuracy solutions of a class of Riccati equations. Control-Theory and Adv. Technol. 10(4), 2005–2016 (1995)

    MathSciNet  Google Scholar 

  45. Weichelt, H.K.: Numerical aspects of flow stabilization by Riccati feedback. Dissertation, Otto-Von-Guericke-Universität, Magdeburg, Germany. https://doi.org/10.25673/4493 (2016)

  46. Zhang, L., Fan, H.Y., Chu, E.K.: Inheritance properties of Krylov subspace methods for continuous-time algebraic Riccati equations. J. Comput. Appl. Math. 371(112), 685 (2020). https://doi.org/10.1016/j.cam.2019.112685

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Upper Saddle (1996)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the German Research Foundation (DFG) Research Training Group 2297 “Mathematical Complexity Reduction (MathCoRe)”, Magdeburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen W. R. Werner.

Ethics declarations

Competing interests

Parts of this work were carried out while Werner was at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany. Benner is a member of the editorial board of Numerical Algorithms. The authors declare to have no competing interests related to this work.

Additional information

Code and data availability

The source code of the implementations used to compute the presented results, the used data and computed results are available at https://doi.org/10.5281/zenodo.6308400 under the BSD-2-Clause license and authored by Steffen W. R. Werner.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benner, P., Heiland, J. & Werner, S.W.R. A low-rank solution method for Riccati equations with indefinite quadratic terms. Numer Algor 92, 1083–1103 (2023). https://doi.org/10.1007/s11075-022-01331-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01331-w

Keywords

Navigation