Skip to main content
Log in

Up to eighth-order maximum-principle-preserving methods for the Allen–Cahn equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we develop a class of up to eighth-order maximum-principle-preserving (MPP) methods for the Allen–Cahn equation. Beginning with the space-discrete system, we extend the integrating factor two-step Runge–Kutta (IFTSRK) methods and define sufficient conditions for the preservation of the discrete maximum principle. In particular, we combine the IFTSRK methods with the linear stabilization technique to develop the stabilized IFTSRK formulations and successfully derive sufficient conditions to preserve the discrete maximum principle unconditionally. Furthermore, we provide error estimates for these proposed methods. Numerical experiments are carried out to illustrate the high-order accuracy and MPP characteristic of the proposed methods and to verify the efficiency through simulations of the long-time evolutional behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Beneš, M., Chalupeckỳ, V., Mikula, K.: Geometrical image segmentation by the Allen–Cahn equation. Appl. Numer. Math. 51(2-3), 187–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM Journal on Scientific Computing 32(3), 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phase–field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45(10), 7424 (1992)

    Article  Google Scholar 

  6. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. on Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. on Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst-A 28(4), 1669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. of Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. of Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, J., Qian, X., Zhang, H., Song, S.: Novel energy dissipative method on the adaptive spatial discretization for the Allen–Cahn equation. Chin. Phys. B 30(7), 070201 (2021)

    Article  Google Scholar 

  12. Du, Q., Gunzburger, M.D., Peterson, J.S.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34(1), 54–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. on Pure and Appl. Math. 45(9), 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge—Kutta methods for semilinear parabolic equations. J Comput. Phys. 439, 110405 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. of Sci. Comput. 72(3), 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. in Math. Sci. 14(6), 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. of Comput. Math. 34(5), 451 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. on Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hou, T, Xiu, D., Jiang, W.: A new second-order maximum-principle preserving finite difference scheme for Allen–Cahn equations with periodic boundary conditions. Appl. Math. Lett. 104, 106265 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao, H., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leah, I., J, G.Z., Sigal, G.: Strong stability preserving integrating factor Runge–Kutta methods. SIAM J. on Numer. Anal. 56(6), 3276–3307 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chollom, J., Jackiewicz, Z.: Construction of two-step Runge—Kutta methods with large regions of absolute stability. J. of Comput. and Appl. Math. 157(1), 125–137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jackiewicz, Z., Renaut, R., Feldstein, A.: Two-step Runge–Kutta methods. SIAM J. on Numer. Anal. 28(4), 1165–1182 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. on Numer. Anal. 32(5), 1390–1427 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jackiewicz, Z., Tracogna, S.: Variable stepsize continuous two-step Runge-Kutta methods for ordinary differential equations. Numer. Algorithms 12(2), 347–368 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eyre, D.: An unconditionally stable one-step scheme for gradient systems, Unpublished article. pp. 1–15 (1998)

  30. Guo, J., Wang, C., Wise, S.M., Yue, X.: An h2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commun. in Math. Sci. 14(2), 489–515 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Lee, H.G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Comput Math. Appl. 60(6), 1591–1606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. on Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhai, S, Ye, C., Weng, Z.: A fast and efficient numerical algorithm for fractional Allen–Cahn with precise nonlocal mass conservation. Appl. Math. Lett. 103, 106190 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, B., Yang, J., Zhou, Z.: Arbitrarily High-Order exponential cut-off methods for preserving maximum bound principle of parabolic equations. SIAM J. on Sci. Comput. 42(6), A3957–A3978 (2020)

    Article  MATH  Google Scholar 

  37. Yang, J., Yuan, Z., Zhou, Z.: Arbitrarily high-order maximum bound preserving schemes with cut-off postprocessing for Allen–Cahn equations. arXiv:2102.13271 (2021)

  38. Li, J., Li, X., Ju, L., Feng, X.: Stabilized integrating factor Runge–Kutta method and unconditional preservation of maximum bound principle. SIAM J. on Sci. Comput. 43(3), A1780–A1802 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge–Kutta schemes for Allen–Cahn equation. Appl. Numer. Math. 161, 372–390 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear schrödinger equation. J. of Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leah, I., J, G.Z., Sigal, G.: Strong stability preserving integrating factor two-step Runge–Kutta methods. J. of Sci. Comput. 81(3), 1446–1471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Douglas, J. Jr, Dupont T.: Alternating-direction Galerkin methods on rectangles. Numerical solution of partial differential equations-ii (1971)

  43. Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. of Sci. Comput. 59(3), 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Duchemin, L., Eggers, J.: The explicit-implicit-null method: removing the numerical instability of pdes. J. of Comput. Phys. 263, 37–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. of Comput. Phys. 395, 489–510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, H., Yan, J., Qian, X., Song, S.: Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations, Computer Methods in Applied Mechanics and Engineering, accepted (2021)

  47. Du, Q., Ju, L., Lu, J.: Analysis of fully discrete approximations for dissipative systems and application to time-dependent nonlocal diffusion problems. J. of Sci. Comput. 78(3), 1438–1466 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ketcheson, G.S., I, D., macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. on Numer. Anal. 49(6), 2618–2639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. on Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods in Appl. Mech. and Eng. 345, 826–853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers for their valuable suggestions, which helped improve this manuscript.

Funding

This research is supported by the National Key R&D Program of China (2020YFA0709803), the National Natural Science Foundation of China (No. 11901577, 11971481, 12071481), the Natural Science Foundation of Hunan (No. 2020JJ5652), the National Key Project (No.GJXM92579), the Defense Science Foundation of China (2021-JCJQ-JJ-0538) and the Research Fund of National University of Defense Technology (No. ZK19-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhang, H., Qian, X. et al. Up to eighth-order maximum-principle-preserving methods for the Allen–Cahn equation. Numer Algor 92, 1041–1062 (2023). https://doi.org/10.1007/s11075-022-01329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01329-4

Keywords

Navigation