Skip to main content
Log in

Numerical solution to a nonlinear McKendrick-Von Foerster equation with diffusion

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

An implicit finite difference scheme is presented to approximate the solution to the McKendrick-Von Foerster equation with diffusion (M-V-D). The notion of upper solution is introduced and used effectively with aid of discrete maximum principle to study the well-posedness and stability of the numerical scheme. A relation between the numerical solutions to the M-V-D and the steady state problem is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choudury, G., Korman, P.: On computation of solutions of fully nonlinear elliptic problems. J. Comput. Appl. Math. 41(3), 301–311 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Day, W. A.: Extensions of a property of the heat equation to linear thermoelasticity and other theories. Quart. Appl. Math. 40(3), 319–330 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Day, W. A.: Heat Conduction within Linear Thermoelasticity. Springer, New York (1985)

    Book  MATH  Google Scholar 

  4. Deng, K.: Comparison principle for some nonlocal problems. Quart. Appl. Math. 50(3), 517–522 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diekmann, O., Heesterbeek, J. A. P.: Mathematical Epidemiology of Infectious Diseases. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2000). Model building, analysis and interpretation

    Google Scholar 

  6. Friedman, A.: Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8, 161–183 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Friedman, A.: Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Q. Appl. Math. 44(3), 401–407 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Greenspan, D., Parter, S. V.: Mildly nonlinear elliptic partial differential equations and their numerical solutoin. II. Numer. Math. 7(2), 129–146 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kakumani, B. K., Tumuluri, S. K.: Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 22(2), 407–419 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Kakumani, B. K., Tumuluri, S. K.: A numerical scheme to the mckendrick–von foerster equation with diffusion in age. Numer. Methods Partial Differ. Equ. 34(6), 2113–2128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kawohl, B.: Remarks on a paper by w.a.day on a maximum principle under nonlocal boundary conditions. Q. Appl. Math. 44(4), 751–752 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lazer, A. C., Leung, A. W., Murio, D. A.: Monotone scheme for finite difference equations concerning steady-state prey-predator interactions. J. Comput. Appl. Math. 8(4), 243–252 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Y., Xu, S., Yin, H. M.: Finite difference approximations for a class of non-local parabolic equations. Int. J. Math. Math. Sci. 20(1), 147–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mann, W. R., Wolf, F.: Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 9(2), 163–184 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Michel, P., Touaoula, T. M.: Asymptotic behavior for a class of the renewal nonlinear equation with diffusion. Math. Methods Appl. Sci. 36(3), 323–335 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Michel, P., Tumuluri, S. K.: A note on a neuron network model with diffusion. Discrete Contin. Dyn. Syst. Ser. B 25(9), 3659–3676 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Murray, J. D.: Mathematical Biology. I, Interdisciplinary Applied Mathematics, 3rd edn, vol. 17. Springer, New York (2002). An introduction

    Google Scholar 

  18. Murray, J. D.: Mathematical Biology. II, Interdisciplinary Applied Mathematics, 3rd edn, vol. 18. Springer, New York (2003). Spatial models and biomedical applications

    Google Scholar 

  19. Özışık, M.N.: Boundary Value Problems of Heat Conduction Courier. Corporation (1989)

  20. Pao, C. V.: Asymptotic behavior of temperature in a nonlinear radiating, linear absorbing rod of finite length. Q. Appl. Math. 34(4), 429–435 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pao, C. V.: Asymptotic behavior of solutions for finite-difference equations of reaction-diffusion. SIAM J. Numer. Anal. 24(1), 24–35 (1987)

    Article  MathSciNet  Google Scholar 

  22. Pao, C. V.: Asymptotic behavior of solutions for finite-difference equations of reaction-diffusion. J. Math. Anal. Appl. 144(1), 206–225 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pao, C. V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  24. Pao, C. V.: Dynamics of reaction-diffusion equations with nonlocal boundary conditions. Q. Appl. Math. 53(1), 173–186 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pao, C. V.: Finite difference reaction diffusion equations with nonlinear boundary conditions. Numer. Methods Partial Differ. Equ. 11(4), 355–374 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pao, C. V.: Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions. J. Comput. Appl. Math. 88(1), 225–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pao, C. V.: Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. J. Comput. Appl. Math. 136(1-2), 227–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    Book  MATH  Google Scholar 

  29. Perthame, B.: Parabolic Equations in Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19500-1. Growth, reaction, movement and diffusion

    Google Scholar 

  30. Ross, L. W.: Perturbation analysis of diffusion-coupled biochemical reaction kinetics. SIAM J. Appl. Math. 19(2), 323–329 (1970)

    Article  Google Scholar 

  31. Russell, R. D., Schampine, L. F.: Numerical methods for singular boundary value problems. SIAM J. Numer. Anal. 12, 13–36 (1975)

    Article  MathSciNet  Google Scholar 

  32. Sattinger, D. H.: Monotone method in nonlinear elliptic and parabolic boundary value problem. Ind. Univ. Math. J. 21, 979–1000 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Thieme, H. R.: Mathematics in Population Biology. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful suggestions and comments which improved the quality of the manuscript.

Funding

The first author received financial support from CSIR (Ref.: 09/414(1154)/2017-EMR-I) for his research. The second author is supported by Department of Science and Technology, India, under MATRICS (MTR/2019/000848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydev Halder.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

The data that support the findings of this study are available within the article.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, J., Tumuluri, S.K. Numerical solution to a nonlinear McKendrick-Von Foerster equation with diffusion. Numer Algor 92, 1007–1039 (2023). https://doi.org/10.1007/s11075-022-01328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01328-5

Keywords

Navigation