Skip to main content
Log in

Iterative refinement of Schur decompositions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (more) accurate Schur decomposition of A from a given approximate Schur decomposition. This task arises, for example, in the context of parameter-dependent eigenvalue problems and mixed precision computations. We have developed a Newton-like algorithm that requires the solution of a triangular matrix equation and an approximate orthogonalization step in every iteration. We prove local quadratic convergence for matrices with mutually distinct eigenvalues and observe fast convergence in practice. In a mixed low-high precision environment, our algorithm essentially reduces to only four high-precision matrix-matrix multiplications per iteration. When refining double to quadruple precision, it often needs only 3–4 iterations, which reduces the time of computing a quadruple precision Schur decomposition by up to a factor of 10–20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For the matrix A and indices i1i2, j1j2, with A(i1 : i2,j1 : j2) we denote the submatrix of A consisting of all elements aij such that i ∈{i1,i1 + 1,…,i2} and j ∈{j1,j1 + 1,…,j2}. If i1 = i2, or j1 = j2, then one index can be dropped, e.g., A(i1,j1 : j2) = A(i1 : i1,j1 : j2) and \(A(i_{1}, j_{1}) = A(i_{1}:i_{1}, j_{1}:j_{1}) = a_{i_{1},j_{1}}\).

  2. Note that Matlab’s Symbolic Toolbox vpa (variable precision arithmetic) supports eigenvalue computations but it does not support the computation of Schur decompositions. Executing eig in vpa takes 33.70 s for a 100 × 100 matrix in quadruple precision, compared to only 0.30 s needed by Advanpix for the complete Schur decomposition.

References

  1. Advanpix: Multiprecision computing toolbox for Matlab. http://www.advanpix.com/. Accessed: 2021-12-15

  2. Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T., Dongarra, J., Fox, A., Gates, M., Higham, N. J., Li, X. S., Loe, J., Luszczek, P., Pranesh, S., Rajamanickam, S., Ribizel, T., Smith, B. F., Swirydowicz, K., Thomas, S., Tomov, S., Tsai, Y. M., Yang, U. M.: A survey of numerical linear algebra methods utilizing mixed-precision arithmetic. Int J. High Perform Comput. Appl. 35(4), 344–369 (2021)

    Article  Google Scholar 

  3. Ablin, P., Peyré, G.: Fast and accurate optimization on the orthogonal manifold without retraction. arXiv:2102.07432 (2021)

  4. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2008). With a foreword by Paul Van Dooren

    Book  MATH  Google Scholar 

  5. Absil, P. -A., Mahony, R., Sepulchre, R., Van Dooren, P.: A grassmann-Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ascher, U. M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67(2), 131–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z., Day, D., Demmel, J. W., Dongarra, J. J.: A test matrix collection for non-Hermitian eigenvalue problems (release 1.0). Technical Report CS-97-355, Department of Computer Science, University of Tennessee, Knoxville, TN, USA, March 1997. Also available online from http://math.nist.gov/MatrixMarket

  8. Beyn, W. -J., Kleß, W., Thümmler, V.: Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension. In: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp 47–72. Springer, Berlin (2001)

  9. Bindel, D. S., Demmel, J. W., Friedman, M.: Continuation of invariant subspaces in large bifurcation problems. SIAM J. Sci Comput. 30(2), 637–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boumal, N.: An introduction to optimization on smooth manifolds To appear with Cambridge University Press (2022)

  11. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. I. Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23(4), 929–947 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. II. Aggressive early deflation. SIAM J. Matrix Anal. Appl. 23(4), 948–973 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chatelin, F.: Simultaneous Newton’s Iteration for the Eigenproblem. In: Defect Correction Methods (Oberwolfach, 1983), Volume 5 of Comput. Suppl., pp 67–74. Springer, Vienna (1984)

  14. Davies, R.O., Modi, J.J.: A direct method for completing eigenproblem solutions on a parallel computer. Linear Algebra Appl. 77, 61–74 (1986)

    Article  MATH  Google Scholar 

  15. Demmel, J. W.: Three methods for refining estimates of invariant subspaces. Computing 38, 43–57 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eberlein, P. J.: A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. J. Soc. Indust. Appl. Math. 10, 74–88 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, B., Liu, X., Chen, X., Yuan, Y.-X.: A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim. 28(1), 302–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    Google Scholar 

  19. Greenstadt, J.: A method for finding roots of arbitrary matrices. Math. Tables Aids Comput. 9, 47–52 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Higham, N. J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  21. Higham, N. J.: Functions of Matrices. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  22. Higham, N.J., Schreiber, R.S.: Fast polar decomposition of an arbitrary matrix. SIAM J. Sci Statist. Comput. 11(4), 648–655 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hüper, K., Van Dooren, P.: New algorithms for the iterative refinement of estimates of invariant subspaces. Journal Future Generation Computer Systems 19, 1231–1242 (2003)

    Article  Google Scholar 

  24. Ipsen, I. C. F.: Computing an eigenvector with inverse iteration. SIAM Rev. 39(2), 254–291 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jahn, H. A.: Improvement of an approximate set of latent roots and modal columns of a matrix by methods akin to those of classical perturbation theory. Quart. J. Mech. Appl. Math. 1, 131–144 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jonsson, I., Kågström, B.: Recursive blocked algorithm for solving triangular systems. I. one-sided and coupled Sylvester-type matrix equations. ACM Trans. Math Software 28(4), 392–415 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jonsson, I., Kågström, B.: Recursive blocked algorithm for solving triangular systems. II. Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Trans. Math Software 28(4), 416–435 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kahan, W.: Refineig: a program to refine eigensystems, 2007. Available from https://people.eecs.berkeley.edu/wkahan/Math128/RefinEig.pdf

  29. Konstantinov, M. M., Petkov, P. Hr., Christov, N. D.: Nonlocal perturbation analysis of the Schur system of a matrix. SIAM J Matrix Anal. Appl. 15(2), 383–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lange, M., Rump, S.M.: An alternative approach to Ozaki’s scheme for error-free transformation of matrix multiplication, 2022 Presentation at International Workshop on Reliable Computing and Computer-Assisted Proofs (reCAP2022)

  31. Lundström, E.: Adaptive eigenvalue computations using Newton’s method on the Grassmann manifold. SIAM J Matrix Anal. Appl. 23(3), 819–839 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mehl, C.: On asymptotic convergence of nonsymmetric Jacobi algorithms. SIAM J. Matrix Anal. Appl. 30(1), 291–311 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nocedal, J., Wright, S. J.: Numerical optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  34. Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition. Jpn. J. Ind. Appl Math. 35, 1007–1035 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition II: clustered eigenvalues. Jpn. J. Ind. Appl. Math. 36(2), 435–459 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. O’Leary, D.P., Stewart, G. W.: Data-flow algorithms for parallel matrix computations. Comm. ACM 28(8), 840–853 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ozaki, K., Ogita, T., Oishi, S., Rump, S. M.: Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms 59(1), 95–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stewart, G. W.: A Jacobi-like algorithm for computing the Schur decomposition of a non-Hermitian matrix. SIAM J. Sci. Statist. Comput. 6(4), 853–864 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stewart, G. W., Sun, J. -G.: Matrix Perturbation Theory. Academic Press, New York (1990)

    MATH  Google Scholar 

  40. Sun, J.-G.: Perturbation Bounds for the Schur Decomposition Report UMINF-92.20, Department of Computing Science, Umeå University, Umeå, Sweden (1992)

  41. Sun, J. -G.: Perturbation bounds for the generalized Schur decomposition. SIAM J. Matrix Anal. Appl. 16(4), 1328–1340 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wielandt, H.: Beiträge Zur Mathematischen Behandlung Komplexer Eigenwertprobleme, Teil V: Bestimmung Höherer Eigenwerte Durch Gebrochene Iteration. Bericht B 44/J/37. Aerodynamische Versuchsanstalt Göttingen, Germany (1944)

    Google Scholar 

  43. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Takeshi Ogita for providing the Matlab toolbox acc based on [37]. They are also grateful to Nicolas Boumal and Christian Lubich for discussions related to Remark 1.

Funding

The first author was supported by the Croatian Science Foundation under grant IP-2019-04-6268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvonimir Bujanović.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zvonimir Bujanović, Daniel Kressner, and Christian Schröder contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujanović, Z., Kressner, D. & Schröder, C. Iterative refinement of Schur decompositions. Numer Algor 92, 247–267 (2023). https://doi.org/10.1007/s11075-022-01327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01327-6

Keywords

Navigation