Skip to main content
Log in

Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Independently and under the milder hypothesis that f is even and monotone over [0,π], matrix-less algorithms have been developed for the fast eigenvalue computation of large Toeplitz matrices, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions predicted by the simple-loop theory, combined with the extrapolation idea. Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we adapt the matrix-less algorithm to the considered new setting. Numerical experiments show a higher precision (till machine precision) and the same linear computation cost, when compared with the matrix-less procedures already presented in the relevant literature. Among the advantages, we concisely mention the following: (a) when the coefficients of the simple-loop function are analytically known, the algorithm computes them perfectly; (b) while the proposed algorithm is better or at worst comparable to the previous ones for computing the inner eigenvalues, it is vastly better for the computation of the extreme eigenvalues; a mild deterioration in the quality of the numerical experiments is observed when dense Toeplitz matrices are considered, having generating function of low smoothness and not satisfying the simple-loop assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that the eigenvalues of Xn are real, because Tn(g) is symmetric positive definite and Xn is similar to the symmetric matrix \(T_{n}^{-\frac {1}{2}}(g)T_{n}(l)T_{n}^{-\frac {1}{2}}(g)\).

References

  1. Ekström, S.-E., Garoni, C., Serra-Capizzano, S.: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? Exper. Math. 27(4), 478–487 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahmad, F., Al–Aidarous, E.S., Alrehaili, D.A., Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Numer. Algo. 78(3), 867–893 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ekström, S.-E., Furci, I., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Are the eigenvalues of the B-spline isogeometric analysis approximation of −Δu = λu known in almost closed form? Numer. Linear Algebra Appl. 25(5), 2198–34 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Exact formulae and matrix-less eigensolvers for block banded Toeplitz-like matrices. BIT 58 (4), 937–968 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ekström, S.-E., Garoni, C.: A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices. Numer. Algor. 80, 819–848 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bogoya, M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422, 1308–1334 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bogoya, M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols. Linear Algebra Appl. 493, 606–637 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Böttcher, A., Bogoya, M., Grudsky, S.M., Maksimenko, E.A.: Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices. Mat. Sb. 208 (11), 4–28 (2017)

    MathSciNet  Google Scholar 

  9. Barrera, M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic. Oper. Theory Adv. Appl. 268, 51–77 (2018)

    MathSciNet  Google Scholar 

  10. Bogoya, M., Serra-Capizzano, S.: Eigenvalue superposition expansion for Toeplitz matrix-sequences, generated by linear combinations of matrix-order dependent symbols, and applications to fast eigenvalue computations. arXiv:2112.11794 (2022)

  11. Barbarino, G., Garoni, C., Serra-Capizzano, S.: Block generalized locally Toeplitz sequences: Theory and applications in the multidimensional case. Electron. Trans. Numer. Anal. 53, 113–216 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barbarino, G., Garoni, C., Serra-Capizzano, S.: Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case. Electron. Trans. Numer. Anal. 53, 28–112 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  13. Böttcher, A., Silbermann, B.: Introduction to large truncated Toeplitz matrices. Universitext, p 258. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Garoni, C., Serra-Capizzano, S.: Generalized locally Toeplitz sequences: theory and applications, vol. I. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  15. Garoni, C., Serra-Capizzano, S.: Generalized locally Toeplitz sequences: theory and applications, vol. II. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  16. Grenander, U., Szegő, G.: Toeplitz forms and their applications. California Monographs in Mathematical Sciences, 2nd edn. Chelsea Publishing Co, New York (1984)

    Google Scholar 

  17. Tyrtyshnikov, E.E., Zamarashkin, N.L.: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships. Linear Algebra Appl. 270, 15–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Serra-Capizzano, S.: The extension of the concept of the generating function to a class of preconditioned Toeplitz matrices. Linear Algebra Appl. 267, 139–161 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bogoya, M., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness. Oper. Theory Adv. Appl. 259, 179–212 (2017)

    MATH  MathSciNet  Google Scholar 

  20. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  21. Davis, P.J.: Interpolation and approximation. Dover, New York (1975)

    MATH  Google Scholar 

  22. Kac, M., Murdock, W.L., Szegő, G.: On the eigenvalues of certain Hermitian forms. J. Rational Mech. Anal. 2, 767–800 (1953)

    MATH  MathSciNet  Google Scholar 

  23. Trench, W.F.: Asymptotic distribution of the spectra of a class of generalized kac–Murdock–Szegő matrices. Linear Algebra Appl. 294, 181–192 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Trench, W.F.: Spectral decomposition of Kac–Murdock–Szegő matrices. The selected works of William F. Trench. http://works.bepress.com/william_trench/133(2010)

  25. Barrera, M., Grudsky, S.M.: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices. Oper. Theory Adv. Appl. 259, 51–77 (2017)

    MATH  MathSciNet  Google Scholar 

  26. Serra-Capizzano, S.: An ergodic theorem for classes of preconditioned matrices. Linear Algebra Appl. 282(1-3), 161–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the reviewers for their careful reading and insightful suggestions that improved our article. Part of the numerical experiments were calculated in the computer center Jürgen Tischer of the mathematics department at Universidad del Valle.

Funding

The first author was partially supported by Universidad del Valle. The third author is partially supported by INdAM.GNCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Bogoya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoya, M., Ekström, SE. & Serra-Capizzano, S. Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory. Numer Algor 91, 1653–1676 (2022). https://doi.org/10.1007/s11075-022-01318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01318-7

Keywords

Mathematics Subject Classification (2010)

Navigation