Skip to main content
Log in

Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, some linearly implicit modified energy-conserving schemes are proposed for the modified Korteweg-de Vries equation (mKdV). The proposed schemes are based on the recently developed invariant energy quadratization (IEQ) approach and the scalar auxiliary variable (SAV) approach. We first introduce an auxiliary variable to transform the original model into an equivalent system, with a modified energy functional law. Then, the Fourier pseudospectral method is employed for the spatial discretization, and Crank-Nicolson, and Leap-Frog methods are used for the temporal discretization. We analyze the conservation properties, existence and uniqueness and the linear stability of the proposed schemes. The optimal order convergence rate of the semi-discrete scheme and the fully discrete schemes were analyzed, respectively. At last, some numerical examples are presented to illustrate the effectiveness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Miura, R. M.: The Korteweg-de Vries equation: a survey of results. SIAM Rev. 19(4), 412–459 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Physica A 264, 581–592 (1999)

    Article  Google Scholar 

  3. Su, C. H., Gardner, C. S.: Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation. J. Math. Phys. 10(3), 536–539 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Salahuddin, M.: Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma. Plasma Phys. Control. Fusion 32(1), 33–41 (1990)

    Article  Google Scholar 

  5. Drazin, P. G., Johnson, R. S.: Solitons: an introduction. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  6. Wadati, M.: The exact solution of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn 32, 1681–1687 (1972)

    Article  Google Scholar 

  7. Yang, X. F., Ju, L. L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiang, C. L., Cai, W. J., Wang, Y. S.: A linearly implicit and local energy-preserving scheme for the Sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yan, J. L., Deng, D. W., Lu, F. Q., Zhang, Z. Y.: A new efficient energy-preserving finite volume element scheme for the improved Boussinesq equation. Appl. Math. Model. 87, 20–41 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gong, Y. Z., Zhao, J.: Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach. Appl. Math. Lett. 94, 224–231 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gong, Y. Z., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gong, Y. Z., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models. SIAM J. Sci. Comput. 42(1), B135–B156 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gong, Y. Z., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models. Comput. Phys. Commun. 249, 107033 (2020)

    Article  MathSciNet  Google Scholar 

  16. Xiang, X. M.: Numerical analysis of spectral method. China Science Publishing and Media Ltd, Beijing (2000)

    Google Scholar 

  17. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Mat. Comput. 38, 67–86 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudospectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hong, Q., Wang, Y. S., Gong, Y.Z.: Optimal error estimate of two linear and momentum-preserving Fourier pseudo-spectral schemes for the RLW equation. Numer. Methods Partial Differ. Equ. 36, 394–417 (2020)

    Article  MathSciNet  Google Scholar 

  20. Bao, W., Cai, Y.: Optimal error estmiates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)

    Article  MATH  Google Scholar 

  21. Xie, S., Yi, S.: A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations. Adv. Comput. Math. 46(1), 1–22 (2020)

    Article  MATH  Google Scholar 

  22. Zhang, H., Qian, X., Yan, J. Y., Song, S. H.: Highly efficient invariant-conserving explicit Runge-Kutta schemes for nonlinear Hamiltonian differential equations. J. Comput. Phys. 418, 109598 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, Z. G., Li, X. L.: Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98, 206–214 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu, Z. G., Li, X. L.: The exponential scalar auxiliary variable (E-SAV) approach for phase field models and Its explicit computing. SIAM J. Sci. Comput. 42(3), B630–B655 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  26. Akrivisy, G., Li, B. Y., Li, D. F.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41(6), A3703–A3727 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gardner, G. A., Ali, A. H. A., Gardner, L. R. T.: Solutions for the modified Korteweg-de Vries equation. In: Pande, G.N., Middleton, J. (eds.) Numerical Methods in Engineering , pp 590–597. Elsevier Applied Science, London (1990)

  28. Gardner, L. R. T., Gardner, G. A., Geyikli, T.: Solitary wave solutions of the MKdV equation. Comput. Methods Appl. Mech. Eng. 124(4), 321–333 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ancoa, S. C., Ngatat, N. T., Willoughby, M.: Interaction properties of complex modified Korteweg-de Vries (mKdV) solitons. Physica D 240, 1378–1394 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Geyikli, T.: Finite element studies of the modified KdV equation. Doctoral dissertation (University College of North Wales, Bangor UK (1994)

  31. Mokhtari, R., Mohseni, M.: A meshless method for solving mKdV equation. Comput. Phys. Commun. 183, 1259–1268 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Aydin, A., Koroglu, C.: A nonstandard numerical method for the modified KdV equation. Pramana-J. Phys. 89(5), 72 (2017)

    Article  Google Scholar 

  33. Bona, J. L., Dougalis, V. A., Karakashian, O. A., McKinney, W. R.: Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. R. Soc. 351(1695), 107–164 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Bona, J. L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous-Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yi, N. Y., Huang, Y. Q., Liu, H. L.: A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: energy conservation and boundary effect. J. Comput. Phys. 242, 351–366 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yan, J. L., Zhang, Q., Zhang, Z. Y., Liang, D.: A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation. Numer. Algorithms 74, 659–674 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  37. Chen, J. B., Qin, M. Z.: Multi-symplectic Fourier pseudospectral method for the nonlinear schrödinger equation. Electron. Trans. Numer. Anal. 12, 193–204 (2001)

    MATH  MathSciNet  Google Scholar 

  38. Biswas, A., Raslan, K. R.: Numerical simulation of the modified Korteweg-de Vries equation. Phys. Wave Phenom. 19, 142–147 (2011)

    Article  Google Scholar 

  39. Ak, T., Karakoc, S. B. G., Biswas, A.: A new approach for numerical solution of modified Korteweg-de Vries equation. Iran. J. Sci. Technol. Trans. A Sci. 41, 1109–1121 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ak, T., Karakoc, S. B. G., Biswas, A.: Application of Petrov-Galerkin finite element method to shallow water waves model: modified Korteweg-de Vries equation. Sci. Iran. B 24(3), 1148–1159 (2017)

    Google Scholar 

  41. Bashan, A.: A novel approach via mixed Crank-Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation. Pramana-J. Phys. 92(6), 1148–1159 (2019)

    Article  Google Scholar 

  42. Raslan, K. R., Baghdady, H. A.: A finite difference scheme for the modified Korteweg-de Vries equation. Gen. Math. Notes 27(1), 101–113 (2015)

    Google Scholar 

  43. Ismail, M. S., Alotaibi, F.: Numerical simulation of modified Kortweg-de Vries equation by linearized implicit schemes. Appl. Math. 11, 1139–1161 (2020)

    Article  Google Scholar 

  44. Celledoni, E., Grimm, V., McLachlan, R. I., McLaren, D. I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs, using the “Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Cai, J.X., Miao, J.: New explicit multisymplectic scheme for the complex modified Korteweg-de Vries equation. Chin. Phys. Lett. 29(3), 030201 (2012)

    Article  MATH  Google Scholar 

  46. Frasca-Caccia, G., Hydon, P. E.: Locally conservative finite difference schemes for the modified KdV equation. J. Comput. Dyn. 6(2), 307–323 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhang, D. J., Zhao, S. L., Sun, Y. Y., Zhou, J.: Solutions to the modified Korteweg-de Vries equation. Rev. Math. Phys. 26, 1430006 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their insightful comments and suggestions.

Funding

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11861047, 41901323, 11801226), Natural Science Foundation of Fujian Province (Grant No. 2019J01831), PhD Start-up Fund of Wuyi University (Grant No.YJ201702), Teacher and Student Scientific Team Fund of Wuyi University (Grant No. 2020-SSTD-003) and Jiangsu Key Laboratory for NSLSCS (Grant No. 201804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Yan.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zhu, L., Lu, F. et al. Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation. Numer Algor 91, 1511–1546 (2022). https://doi.org/10.1007/s11075-022-01312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01312-z

Keywords

Mathematics Subject Classification (2010)

Navigation