Skip to main content
Log in

The method of cyclic projections for closed convex sets in a Hilbert space under the presence of computational errors

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study the method of cyclic projections for inconsistent convex feasibility problems in a Hilbert space under the presence of computational errors. We show that our algorithm generates a good approximate solution, if computational errors are bounded from above by a small positive constant. Our main goal is, for a known computational error, to find out what approximate solution can be obtained and how many iterates one needs for this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharoni, R., Censor, Y., Jiang, Z.: Finding a best approximation pair of points for two polyhedra. Comput. Optim. Appl. 71, 509–523 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4, 1–9 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H.: The composition of projections onto closed convex sets in Hilbert space is asymptotically regular. Proc. Amer. Math. Soc. 131, 141–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Analysis 1, 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space. In: Censor, Y., Reich, S. (eds.) , pp 1–38 (1997)

  7. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approximation Theory 127, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Koch, V.: Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces. Contemp. Math. 636, 1–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruck, R.E., Reich, S.: Nnexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Butnariu, D., Reich, S.S., Zaslavski, J.: Aymptotic behavior of inexact orbits for a class of operators in complete metric spaces. J. Appl. Anal. 13, 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y., De Pierro, A.R., Zaknoon, M.: Steered sequential projections for the inconsistent convex feasibility problem. Nonlinear Anal. 59, 385–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Eggermont, P.P.B., Gordon, D.: Strong underrelaxation in Kaczmarz’s method for inconsistent systems. Numer. Math. 41, 83–92 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Tom, E.: Convergence of string-averaging projection schemes for inconsistent convex feasibility problems. Optim Methods Softw 18, 543–554 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Zaknoon, M.: Algorithms and convergence results of projection methods for inconsistent feasibility problems: a review. Pure Appl. Func. Anal. 3, 565–586 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proceeding of the American Mathematical Society 10, 448–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Combettes, P.L.: Inconsistent signal feasibility problems: Least-squares solutions in a product space. IEEE Trans. Signal Process. 42, 2955–29664 (1994)

    Article  Google Scholar 

  17. Combettes, P.L., Bondon, P.: Hard-constrained inconsistent signal feasibility problems. IEEE Trans. Signal Processing 47, 2460–2468 (1999)

    Article  MATH  Google Scholar 

  18. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  19. Gibali, A.: A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2, 243–258 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  21. Gurin, L.G., Poljak, B.T., Raik, E.V.: Projection methods for finding a common point of convex sets. Zycisl. Mat i Mat Fiz. 7, 1211–1228 (1967)

    MathSciNet  Google Scholar 

  22. Iiduka, H.: Optimization for inconsistent split feasibility problems. Numer. Funct. Anal. Optim. 37, 186–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kopecka, E., Reich, S.: A note on the von Neumann alternating projections algorithm. J. Nonlinear Convex Anal. 5, 379–386 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Kopecka, E., Reich, S.: A note on alternating projections in Hilbert space. J. Fixed Point Theory appl. 12, 41–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luke, D.R.: Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space. SIAM J. Optim. 19, 714–739 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Matoušková, E., Reich, S.: The Hundal example revisited. J. Nonlinear Convex Anal. 4, 411–427 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Functional Anal. 26, 378–395 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reich, S., Tuyen, T.M.: Projection algorithms for solving the split feasibility problem with multiple output sets. J. Optim. Theory Appl. 190, 861–878 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reich, S., Zalas, R.: A modular string averaging procedure for solving the common fixed point problem for quasi-nonexpansive mappings in Hilbert space. Numer. Algo. 72, 297–323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reich, S., Zaslavski, A.J.: Genericity in Nonlinear Analysis Developments in Mathematics, vol. 34. Springer, New York (2014)

    Book  MATH  Google Scholar 

  32. Takahashi, W.: The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2, 685–699 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Takahashi, W.: A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 3, 349–369 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Takahashi, W., Wen, C.-F., Yao, J.-C.: A strong convergence theorem by Halpern type iteration for a finite family of generalized demimetric mappings in a Hilbert space. Pure Appl. Funct. Anal. 4, 407–426 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Takahashi, W., Xu, H.K., Yao, J.C.: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 23, 205–221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zaslavski, A.J.: Approximate Solutions of Common Fixed Point Problems, Springer Optimization and Its Applications. Springer, Cham (2016)

    Google Scholar 

  37. Zaslavski, A.J.: Algorithms for Solving Common Fixed Point Problems, Springer Optimization and Its Applications. Springer, Cham (2018)

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks anonymous referees for careful reading the paper and providing him with useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaslavski, A.J. The method of cyclic projections for closed convex sets in a Hilbert space under the presence of computational errors. Numer Algor 91, 1427–1439 (2022). https://doi.org/10.1007/s11075-022-01308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01308-9

Keywords

Mathematics Subject Classification (2010)

Navigation