Skip to main content
Log in

Efficient numerical methods for Cauchy principal value integrals with highly oscillatory integrands

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper focus on the numerical evaluation of the Cauchy principal value integrals with oscillatory integrands where α, β > − 1,− 1 < τ < 1. For the case f is analytic in a sufficiently large region containing [− 1,1], the integrals can be transformed into the problems of integrating two line integrals, the integrands of which do not oscillate and decay exponentially fast, and thus can be computed by using Gaussian quadrature rules. For the smooth function f, a method is constructed by interpolating f at Clenshaw–Curtis points and the singular point τ, based on the fast computation of modified moments. Error bounds of two proposed methods are both presented. In addition, several numerical examples are given to illustrate the efficiency and accuracy of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, NewYork (2003)

    Book  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C. (1964)

    MATH  Google Scholar 

  3. Ball, J.S., Beebe, N.H.F.: Efficient Gauss-related quadrature for two classes of logarithmic weight functions. ACM Trans. Math. Software 33, 21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capobianco, M.R., Criscuolo, G.: On quadrature for Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math 156, 471–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, R.: Numerical analysis for Cauchy principal value integrals of oscillatory kind. Int. J. Comput. Math 89, 701–710 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, R.: Fast integration for Cauchy principal value integrals of oscillatory kind. Acta Appl. Math 123, 21–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an auto computer. Numer. Math 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  9. Fang, C.: Efficient methods for highly oscillatory integrals with weak and Cauchy singularities. Int. J. Comput. Math 93(9), 1597–1610 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gautschi, W., Milovanović, G.V.: Polynomials orthogonal on the semicircle. J. Approx. Theory 46, 230–250 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gautschi, W.: Gauss quadrature routines for two classes of logarithmic weight functions. Numer. Algor. 55, 265–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentleman, W.M.: Implementing Clenshaw–Curtis quadrature II: Computing the cosine transformation. Commun. ACM 15, 343–346 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29, 1420–1438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hasegawa, T., Sugiura, H.: Uniform approximation to finite Hilbert transform of oscillatory functions and its algorithm. J. Comput. Appl. Math. 358, 327–342 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, G., Xiang, S.: An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory functions and its application. J. Comput. Appl. Math 280, 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, H., Xiang, S.: Efficient integration for a class of highly oscillatory integrals. Appl. Math. Comput. 218, 3553–3564 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Kang, H., Xiang, S.: Efficient quadrature of highly oscillatory integrals with algebraic singularities. J. Comput. Appl. Math 237, 576–588 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang, H., Chen, L.: Computation of integrals with oscillatory singular factors of algebraic and logarithmic type. J. Comput. Appl. Math 285, 72–85 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keller, P.: A practical algorithm for computing Cauchy principal value integrals. Appl. Math. Comput. 218, 4988–5001 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Kurtoǧlu, D.K., Hasçelik, A.I., Milovanović, G.V.: A method for efficient computation of integrals with oscillatory and singular integrand. Numer. Algor. 85, 1155–1173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B., Xiang, S.: Efficient methods for highly oscillatory integrals with weakly singular and hypersingular kernels. Appl. Math. Comput 362, 12449 (2019)

    MathSciNet  Google Scholar 

  22. Liu, G., Xiang, S.: Clenshaw–Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels. Appl. Math. Comput 340, 251–267 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Lozier, D. W.: Numerical Solution of Linear Difference Equations, Report NBSIR 80-1976. National Bureau of Standerds, Washington, D.C (1980)

    Google Scholar 

  24. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, New York (2003)

    MATH  Google Scholar 

  25. Milovanović, G.V.: Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures. Comput. Math. Appl. 36, 19–39 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Okecha, G.E.: Quadrature formulae for Cauchy principal value integrals of oscillatory kind. Math. Comput 49, 259–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oliver, J.: The numerical solution of linear recurrence relations. Numer. Math 11, 349–360 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piessens, R., Branders, M.: Modified Clenshaw–Curtis method for the computation of Bessel function integrals. BIT Numer. Math 23, 370–381 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Piessens, R., Branders, M.: On the computation of Fourier transforms of singular functions. J. Comput. Appl. Math 43, 159–169 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  32. Wang, H., Xiang, S.: Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput 215, 1886–1894 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Wang, H.: On the evaluation of Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math 234, 95–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiang, S., Chen, X., Wang, H.: Error bounds in Chebyshev points. Numer. Math 116, 463–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiang, S., Cho, Y., Wang, H., Brunner, H.: Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Anal 31, 1281–1314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiang, S., He, G., Cho, Y.: On error bounds of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals. Adv. Comput. Math 41, 573–597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiang, S., Fang, C., Xu, Z.: On uniform approximations to hypersingular finite-part integrals. J. Math. Anal. Appl 435, 1210–1228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees and the editors for their valuable suggestions and comments for great improvement of this paper.

Funding

This work was supported by the Youth Core Teachers Foundation of Zhengzhou University of Light Industry, and the National Natural Science Foundation of China (grant numbers 11701526, 11971446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Lv, Z. & Geng, H. Efficient numerical methods for Cauchy principal value integrals with highly oscillatory integrands. Numer Algor 91, 1287–1314 (2022). https://doi.org/10.1007/s11075-022-01302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01302-1

Keywords

Navigation