Skip to main content
Log in

Analysis of fractal dimension of mixed Riemann-Liouville integral

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, we provide a rigorous study on the fractal dimension of the graph of the mixed Riemann-Liouville fractional integral for various choices of continuous functions on a rectangular region. We estimate bounds for the box dimension and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral of the functions which belong to the class of continuous functions and the class of Hölder continuous functions. We also show that the box dimension of the graph of the mixed Riemann-Liouville fractional integral of two-dimensional continuous functions is also two. Furthermore, we give the construction of unbounded variational continuous functions. Later, we prove that the box dimension and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral of unbounded variational continuous functions are two. Moreover, we illustrate our results by using some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, C.R., Clarkson, J.A.: Properties of functions f(x, y) of bounded variation. Trans. Amer. Math. Soc. 36(4), 711–730 (1934)

    MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F.: Fractal Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  3. Barnsley, M.F.: Fractal functions and interpolation. Construct. Approx. 2, 303–32 (1986)

    Article  MathSciNet  Google Scholar 

  4. Bouboulis, P., Dalla, L., Drakopoulos, V.: Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension. J. Approx. Theory 141(2), 99–117 (2006)

    Article  MathSciNet  Google Scholar 

  5. Barański, K., Bárány, B., Romanowska, J.: On the dimension of the graph of the classical Weierstrass function. Adv. Math. 265, 32–59 (2014)

    Article  MathSciNet  Google Scholar 

  6. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two variables. Trans. Amer. Math. Soc. 35(4), 824–854 (1933)

    Article  MathSciNet  Google Scholar 

  7. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(03), 2150066 (2021)

    Article  Google Scholar 

  8. Falconer, J.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley Sons Inc., New York (1999)

    MATH  Google Scholar 

  9. Feng, Z.: Variation and Minkowski dimension of fractal interpolation surface. J. Math. Anal. Appl. 345(1), 322–334 (2008)

    Article  MathSciNet  Google Scholar 

  10. Feng, Z., Sun, X.: Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions. J. Math. Anal. Appl. 412 (1), 416–425 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hunt, B.R.: The Hausdorff dimension of graphs of Weierstrass functions. Proc. Am. Math. Soc. 126(3), 791–800 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B. V., Amsterdam (2006)

    MATH  Google Scholar 

  13. Liang, Y.S., Su, W.Y.: The relationship between the box dimension of the Besicovitch functions and the orders of their fractional calculus. Appl. Math.Comput. 200, 297–307 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Liang, Y.S.: Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation. Nonlin. Anal. 72(11), 4304–4306 (2010)

    Article  MathSciNet  Google Scholar 

  15. Liang, Y.S.: The Weyl-Marchaud fractional derivative of a type of self-affine functions. Appl. Math. Comput. 218(17), 8695–8701 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Liang, Y.S.: Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions. Fract. Calc. Appl. Anal. 21(6), 1651–1658 (2019)

    Article  MathSciNet  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Ruan, H.J., Su, W.Y., Yao, K.: Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. Theory 161(1), 187–197 (2009)

    Article  MathSciNet  Google Scholar 

  20. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon et alibi (1993)

    MATH  Google Scholar 

  21. Shen, W.: Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z. 289(1), 223–266 (2018)

    Article  MathSciNet  Google Scholar 

  22. Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 3(01), 217–229 (1995)

    Article  MathSciNet  Google Scholar 

  23. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: Fractal dimension and fractional integral. Indag. Math. 31(2), 294–309 (2020)

    Article  MathSciNet  Google Scholar 

  24. Verma, S.: Some Results on Fractal Functions, Fractal Dimensions and Fractional Calculus. Ph.D. thesis, Indian Institute of Technology Delhi India (2020)

  25. Wu, J.R.: On a linearity between fractal dimension and order of fractional calculus in Hölder space. Appl. Math. Comput. 125433, 385 (2020)

    Google Scholar 

  26. Yao, K., Su, W.Y., Zhou, S.P.: On the connection between the order of the fractional calculus and the dimension of a fractal function. Chaos Solitons and Fractals 23(2), 621–629 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author has received the financial support from the CSIR, India (file no.: 09/1058(0012)/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Abbas, S. Analysis of fractal dimension of mixed Riemann-Liouville integral. Numer Algor 91, 1021–1046 (2022). https://doi.org/10.1007/s11075-022-01290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01290-2

Keywords

Mathematics Subject Classification (2010)

Navigation