Skip to main content
Log in

Anderson accelerating the preconditioned modulus approach for linear complementarity problems on second-order cones

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Second-order cone linear complementarity problems (SOCLCPs) have wide applications in real world, and the latest modulus method is proved to be an efficient solver. Here, inspired by the state-of-the-art modulus method and Anderson acceleration (AA), we construct the Anderson accelerating preconditioned modulus (AA+PMS) approach. Theoretically, in the first stage, we utilize the Fr\(\acute { \mathrm {e}}\)chet-differentiability of the absolute value function in Jordan algebra to explore its new properties. On this basis, we establish the convergence theory for the PMS approach different from the previous analysis, and further discuss the selection strategy of parameters involved. In the second stage, we demonstrate the strong semi-smoothness of the absolute value function in Jordan algebra and, thus, establish the local convergence theory for the AA+PMS approach. Finally, we conduct rich numerical experiments with application to some well-structured examples, the second-order cone programming, the Signorini problem of the Laplacian and the three-dimensional frictional contact problem to verify the robustness and effectiveness of the AA+PMS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12(4), 547–560 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17 (6), 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bangerth, W, Hartmann, R, Kanschat, G: Deal. II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. (TOMS) 33(4), 24–es (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnans, J.F., Ramírez, H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104(2), 205–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollapragada, R., Scieur, D., d’Aspremont, A.: Nonlinear acceleration of momentum and primal-dual algorithms. arXiv:1810.04539 (2018)

  8. Brezinski, C., Redivo-Zaglia, M., Saad, Y.: Shanks sequence transformations and anderson acceleration. SIAM Rev. 60(3), 646–669 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Kelley, C.T.: Convergence of the EDIIS algorithm for nonlinear equations. SIAM J. Sci. Comput. 41(1), A365–A379 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J.S., Pan, S.: A descent method for a reformulation of the second-order cone complementarity problem. J. Comput. Appl. Math. 213(2), 547–558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J.S., Pan, S.: A one-parametric class of merit functions for the second-order cone complementarity problem. Comput. Optim. Appl. 45(3), 581–606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104 (2-3), 293–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chupin, M., Dupuy, M.S., Legendre, G., Séré, É.: Convergence analysis of adaptive DIIS algorithms with application to electronic ground state calculations. arXiv:2002.12850 (2020)

  14. Dai, P.F., Li, J., Bai, J., Qiu, J.: A preconditioned two-step modulus-based matrix splitting iteration method for linear complementarity problem. Appl. Math. Comput. 348, 542–551 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Evans, C., Pollock, S., Rebholz, L.G., Xiao, M.: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically). SIAM J. Numer. Anal. 58 (1), 788–810 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems. Springer Science and Business Media (2007)

  17. Fang, L., Han, C.: A new one-step smoothing Newton method for the second-order cone complementarity problem. Math. Methods Appl. Sci. 34(3), 347–359 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, H.R., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16(3), 197–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fu, A., Zhang, J., Boyd, S.: Anderson accelerated Douglas–Rachford splitting. SIAM J. Sci. Comput. 42(6), A3560–A3583 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ganine, V., Hills, N., Lapworth, B.: Nonlinear acceleration of coupled fluid–structure transient thermal problems by Anderson mixing. Int. J. Numer. Methods Fluids 71(8), 939–959 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gowda, M.S., Sznajder, R.: Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim. 18(2), 461–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175(2), 335–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15(2), 593–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems. J. Nonlinear Convex Anal. 6(2), 283 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Higham, N.J., Strabić, N.: Anderson acceleration of the alternating projections method for computing the nearest correlation matrix. Numer. Algorithms 72(4), 1021–1042 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanno, Y., Martins, J.A.C., Pinto da Costa, A.: Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int. J. Numer. Methods Eng. 65(1), 62–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ke, Y.F., Ma, C.F., Zhang, H.: The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. Numer. Algorithms 79(4), 1–21 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Li, J.: A fast Anderson-chebyshev acceleration for nonlinear optimization. In: International Conference on Artificial Intelligence and Statistics, pp 1047–1057. PMLR (2020)

  30. Li, R., Yin, J.F.: Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems. Numer. Algorithms 75(2), 339–358 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, W., Zheng, H.: A preconditioned modulus-based iteration method for solving linear complementarity problems of H-matrices. Linear Multilinear Algebra 64(7), 1390–1403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z.Z., Chu, R.S., Zhang, H.: Accelerating the shift-splitting iteration algorithm. Appl. Math. Comput. 361, 421–429 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Li, Z.Z., Ke, Y.F., Chu, R.S., Zhang, H.: Generalized modulus-based matrix splitting iteration methods for second-order cone linear complementarity problem. Math. Numer. Sin. 41(4), 395–405 (2019)

    MATH  Google Scholar 

  34. Li, Z.Z., Ke, Y.F., Zhang, H., Chu, R.S.: SOR-Like iteration methods for second-order cone linear complementarity problems. East Asian J. Appl. Math. 10(2), 295–315 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, S., Zheng, H., Li, W.: A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems. Calcolo 53(2), 189–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1-3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mai, V., Johansson, M.: Anderson acceleration of proximal gradient methods. In: International Conference on Machine Learning, pp 6620–6629. PMLR (2020)

  38. Mai, V.V., Johansson, M.: Nonlinear acceleration of constrained optimization algorithms. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 4903–4907 (2019)

  39. Malik, M., Mohan, S.: On Q and R0 properties of a quadratic representation in linear complementarity problems over the second-order cone. Linear Algebra Appl. 397, 85–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Murty, K.G., Yu, F.T.: Linear complementarity, linear and nonlinear programming, vol. 3. Citeseer (1988)

  41. Najafi, H.S., Edalatpanah, S.: On the convergence regions of generalized accelerated overrelaxation method for linear complementarity problems. J. Optim. Theory Appl. 156(3), 859–866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ni, P.: Anderson Acceleration of Fixed-Point Iteration with Applications to Electronic Structure Computations. Worcester Polytechnic Institute (2009)

  43. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homogeneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ouyang, W., Peng, Y., Yao, Y., Zhang, J., Deng, B.: Anderson acceleration for nonconvex admm based on douglas-rachford splitting. Comput. Graph. Forum 39(5), 221–239 (2020)

    Article  Google Scholar 

  45. Ouyang, W., Tao, J., Milzarek, A., Deng, B.: Nonmonotone globalization for anderson acceleration using adaptive regularization. arXiv:2006.02559 (2020)

  46. Pang, J.S., Sun, D., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and lorentz complementarity problems. Math. Oper. Res. 28(1), 39–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pavlov, A.L., Ovchinnikov, G W., Derbyshev, D.Y., Tsetserukou, D., Oseledets, I.V.: AA-ICP: iterative closest point with anderson acceleration. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 3407–3412. IEEE (2018)

  48. Pollock, S., Rebholz, L.: Anderson acceleration for contractive and noncontractive operators. arXiv:1909.04638 (2019)

  49. Ren, H., Wang, X., Tang, X.B., Wang, T.: The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. Comput. Math. Appl. 77(4), 1071–1081 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schmieta, S., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Scieur, D., Oyallon, E., d’Aspremont, A., Bach, F.: Nonlinear acceleration of CNNS. arXiv:1806.003701806.00370 (2018)

  52. Scieur, D., Oyallon, E., d’Aspremont, A., Bach, F.: Online regularized nonlinear acceleration. arXiv:1805.09639 (2018)

  53. Sopasakis, P., Menounou, K., Patrinos, P.: Superscs: fast and accurate large-scale conic optimization. In: 2019 18th European Control Conference (ECC), pp 1500–1505. IEEE (2019)

  54. Spann, W., Xia, S.H.: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math. 65(1), 337–356 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tang, W., Daoutidis, P.: Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm. Optim. Eng. 1–43 (2021)

  56. Toth, A., Kelley, C.T.: Convergence analysis for anderson acceleration. SIAM J. Numer. Anal. 53(2), 805–819 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Van Bokhoven, W.M.: A class of linear complementarity problems is solvable in polynomial time. Unpublished paper, Department of Electrical Engineering, University of Technology, the Netherlands (1980)

  58. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiao, J.R., Peng, X.F., Li, W.: Boundary element analysis of unilateral supported Reissner plates on elastic foundations. Comput. Mech. 27(1), 1–10 (2001)

    Article  MathSciNet  Google Scholar 

  60. Xu, W., Zhu, L., Peng, X., Liu, H., Yin, J.: A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 85(1), 1–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yang, W.H., Yuan, X.: The GUS-property of second-order cone linear complementarity problems. Math. Program. 141(1), 295–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yang, Y., Townsend, A., Appelö, D.: Anderson acceleration using the \({\mathscr{H}}^{-s}\) norm. arXiv:2002.03694 (2020)

  63. Yonekura, K., Kanno, Y.: Second-order cone programming with warm start for elastoplastic analysis with von mises yield criterion. Optim. Eng. 13(2), 181–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17 (4), 1129–1153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang, L.H., Yang, W.H.: An efficient matrix splitting method for the second-order cone complementarity problem. SIAM J. Optim. 24(3), 1178–1205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, S.G., Zhu, J.L.: The boundary element-linear complementarity method for the Signorini problem. Eng. Anal. Bound. Elem. 36(2), 112–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, H., Li, J., Pan, S.: New second-order cone linear complementarity formulation and semi-smooth Newton algorithm for finite element analysis of 3d frictional contact problem. Comput. Methods Appl. Mech. Eng. 200 (1-4), 77–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang, L., Li, J., Zhang, H., Pan, S.: A second order cone complementarity approach for the numerical solution of elastoplasticity problems. Comput. Mech. 51(1), 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, J., Yao, Y., Peng, Y., Yu, H., Deng, B.: Fast k-means clustering with Anderson acceleration. arXiv:1805.10638 (2018)

  70. Zhang, J., O’Donoghue, B., Boyd, S.: Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations. SIAM J. Optim. 30 (4), 3170–3197 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to anonymous reviewers for their valuable comments that make our work better.

Funding

This paper is supported by National Science Foundation of China (Nos. 42004085, 41725017, 62173235 and 61602309), China Postdoctoral Science Foundation (No. 2019M663040), Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515110184), the National Key R & D Program of the Ministry of Science and Technology of China (No. 2020YFA0713400 and 2020YFA0713401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Ou-Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, H., Jin, Y. et al. Anderson accelerating the preconditioned modulus approach for linear complementarity problems on second-order cones. Numer Algor 91, 803–839 (2022). https://doi.org/10.1007/s11075-022-01283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01283-1

Keywords

Mathematics Subject Classification (2010)

Navigation