Skip to main content
Log in

Enabling four-dimensional conformal hybrid meshing with cubic pyramids

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The main purpose of this article is to develop a novel refinement strategy for four-dimensional hybrid meshes based on cubic pyramids. This optimal refinement strategy subdivides a given cubic pyramid into a conforming set of congruent cubic pyramids and invariant bipentatopes. The theoretical properties of the refinement strategy are rigorously analyzed and evaluated. In addition, a new class of fully symmetric quadrature rules with positive weights are generated for the cubic pyramid. These rules are capable of exactly integrating polynomials with degrees up to 12. Their effectiveness is successfully demonstrated on polynomial and transcendental functions. Broadly speaking, the refinement strategy and quadrature rules in this paper open new avenues for four-dimensional hybrid meshing, and space-time finite element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Code Availability

The Polyquad code is available at https://github.com/PyFR/Polyquad.

References

  1. Ainsworth, M., Fu, G.: A lowest-order composite finite element exact sequence on pyramids. Comput. Methods Appl. Mech. Eng. 324, 110–127 (2017)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bedrosian, G.: Shape functions and integration formulas for three-dimensional finite element analysis. Int. J. Numer. Methods Eng. 35(1), 95–108 (1992)

    Article  Google Scholar 

  5. Bergot, M., Cohen, G., Duruflé, M.: Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42 (3), 345–381 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bergot, M., Duruflé, M.: Higher-order discontinuous galerkin method for pyramidal elements using orthogonal bases. Numer. Methods Partial Differ. Equ. 29(1), 144–169 (2013)

    Article  MathSciNet  Google Scholar 

  7. Brandts, J., Korotov, S., Křížek, M.: Simplicial finite elements in higher dimensions. Appl. Math. 52(3), 251–265 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cao, C., Qin, Q.H., Yu, A.: A new hybrid finite element approach for three-dimensional elastic problems. Archives of Mechanics 64(3), 261–292 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Caplan, P.C.: Four-dimensional anisotropic mesh adaptation for spacetime numerical simulations. Ph.D. thesis Massachusetts Institute of Technology (2019)

  10. Chan, J., Warburton, T.: A comparison of high order interpolation nodes for the pyramid. SIAM J. Sci. Comput. 37(5), A2151–A2170 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chan, J., Warburton, T.: hp-finite element trace inequalities for the pyramid. Comput. Math. Appl. 69(6), 510–517 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chan, J., Warburton, T.: Orthogonal bases for vertex-mapped pyramids. SIAM J. Sci. Comput. 38(2), A1146–A1170 (2016)

    Article  MathSciNet  Google Scholar 

  13. Chan, J., Warburton, T.: A short note on a Bernstein–Bezier basis for the pyramid. SIAM J. Sci. Comput. 38(4), A2162–A2172 (2016)

    Article  MathSciNet  Google Scholar 

  14. Coulomb, J.L., Zgainski, F.X., Marechal, Y.: A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements. IEEE Trans. Magn. 33(2), 1362–1365 (1997)

    Article  Google Scholar 

  15. Coxeter, H.: Regular and semi-regular polytopes. I. Mathematische Zeitschrift 46(1), 380–407 (1940)

    Article  MathSciNet  Google Scholar 

  16. Coxeter, H.S.M.: Regular polytopes courier corporation (1973)

  17. Devloo, P.R., Duran, O., Gomes, S.M., Ainsworth, M.: High-order composite finite element exact sequences based on tetrahedral–hexahedral–prismatic–pyramidal partitions. Comput Methods Appl Mech Eng 355, 952–975 (2019)

    Article  MathSciNet  Google Scholar 

  18. Dumont, S., Jourdan, F.: A Space-Time Finite Element Method for Elastodynamics Problems with a Moving Loading Zone. In: Eleventh International Conference on Computational Structures Technology (2012)

  19. Frontin, C.V., Walters, G.S., Witherden, F.D., Lee, C.W., Williams, D.M., Darmofal, D.L.: Foundations of space-time finite element methods:, polytopes, interpolation, and integration. Appl. Numer. Math. 166, 92–113 (2021)

  20. Gillette, A.: Serendipity and tensor product affine pyramid finite elements. The SMAI Journal of Computational Mathematics 2, 215–228 (2016)

    Article  MathSciNet  Google Scholar 

  21. Korotov, S., Křížek, M.: Red refinements of simplices into congruent subsimplices. Comput. Math. with Appl. 67(12), 2199–2204 (2014)

    Article  MathSciNet  Google Scholar 

  22. Langer, U., Steinbach, O.: Space-time methods: Applications to Partial Differential Equations, vol. 25 Walter de Gruyter GmbH & Company (2019)

  23. Maday, Y., Mavriplis, C., Patera, A.: Nonconforming mortar element methods: Application to spectral discretizations. In: Domain decomposition methods: Proceedings of the Second International Symposium, pp. 392–418 (1988)

  24. McLaren-Young-Sommerville, D.: An Introduction to the Geometry of n Dimensions Dover (1958)

  25. Meshkat, S., Talmor, D.: Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral mesh. Int. J. Numer. Methods Eng. 49(1-2), 17–30 (2000)

    Article  Google Scholar 

  26. Neumüller, M., Karabelas, E.: Generating Admissable Space-Time Meshes for Moving Domains in (D + 1) Dimensions. In: Space-Time Methods: Applications to Partial Differential Equations, pp. 185–206 (2019)

  27. Nigam, N., Phillips, J.: High-order conforming finite elements on pyramids. IMA J Numer. Anal. 32(2), 448–483 (2012)

    Article  MathSciNet  Google Scholar 

  28. Nigam, N., Phillips, J.: Numerical integration for high order pyramidal finite elements. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 46(2), 239–263 (2012)

    Article  MathSciNet  Google Scholar 

  29. Notaris, S.E.: Gauss-Kronrod quadrature formulae–A survey of fifty years of research. Electron. Trans. Numer. Anal. 45, 371–404 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Pantano, A., Averill, R.C.: A penalty-based interface technology for coupling independently modeled 3D finite element meshes. Finite Elem. Anal. Des. 43(4), 271–286 (2007)

    Article  Google Scholar 

  31. Petrov, M.S., Todorov, T.D.: Stable subdivision of 4D polytopes. Numer. Algorithms 79(2), 633–656 (2018)

    Article  MathSciNet  Google Scholar 

  32. Petrov, M.S., Todorov, T.D.: Properties of the multidimensional finite elements. Applied Mathematics and Computation 391, 125695 (2021)

  33. Reberol, M., Lévy, B.: Low-order continuous finite element spaces on hybrid non-conforming hexahedral-tetrahedral meshes. arXiv:1605.02626(2016)

  34. Seshaiyer, P., Suri, M.: hp submeshing via non-conforming finite element methods. Comput. Methods Appl. Mech. Eng. 189(3), 1011–1030 (2000)

    Article  MathSciNet  Google Scholar 

  35. Shampine, L.F.: Matlab program for quadrature in 2D. Appl. Math. Comput. 202(1), 266–274 (2008)

    Article  MathSciNet  Google Scholar 

  36. Shampine, L.F.: Vectorized adaptive quadrature in Matlab. J. Comput. Appl. Math. 211(2), 131–140 (2008)

    Article  MathSciNet  Google Scholar 

  37. Sherwin, S.J., Warburton, T.C., Karniadakis, G.E.: Spectral/hp methods for elliptic problems on hybrid grids. Contemp. Math. 218, 191–216 (1998)

    Article  MathSciNet  Google Scholar 

  38. Steinbach, O.: Space-time finite element methods for parabolic problems. Comput Methods Appl Math 15(4), 551–566 (2015)

    Article  MathSciNet  Google Scholar 

  39. Steinbach, O., Yang, H.: An Algebraic Multigrid Method for an Adaptive Space–Time Finite Element Discretization. In: International Conference on Large-Scale Scientific Computing, pp. 66–73. Springer (2017)

  40. Todorov, T.D.: The optimal refinement strategy for 3-D simplicial meshes. Comput. Math. Appl. 66(7), 1272–1283 (2013)

    Article  MathSciNet  Google Scholar 

  41. Toulopoulos, I.: Space-time finite element methods stabilized using bubble function spaces. Appl. Anal. 99(7), 1153–1170 (2020)

    Article  MathSciNet  Google Scholar 

  42. Williams, D.M., Frontin, C.V., Miller, E.A., Darmofal, D.L.: A family of symmetric, optimized quadrature rules for pentatopes. Comput. Math. Appl. 80(5), 1405–1420 (2020)

    Article  MathSciNet  Google Scholar 

  43. Witherden, F.D., Vincent, P.E.: On the identification of symmetric quadrature rules for finite element methods. Comput. Math. Appl. 69 (10), 1232–1241 (2015)

    Article  MathSciNet  Google Scholar 

  44. Yamakawa, S., Gentilini, I., Shimada, K.: Subdivision templates for converting a non-conformal hex-dominant mesh to a conformal hex-dominant mesh without pyramid elements. Eng Comput. 27(1), 51–65 (2011)

    Article  Google Scholar 

  45. Yamakawa, S., Shimada, K.: Increasing the number and volume of hexahedral and prism elements in a hex-dominant mesh by topological transformations. In: Proceedings of the 12th International Meshing Roundtable, pp. 403–413 (2003)

  46. Yamakawa, S., Shimada, K.: Converting a tetrahedral mesh to a prism–tetrahedral hybrid mesh for FEM accuracy and efficiency. Int. J. Numer. Methods Eng. 80(1), 74–102 (2009)

    Article  MathSciNet  Google Scholar 

  47. Yamakawa, S., Shimada, K.: 88-Element solution to Schneiders’ pyramid hex-meshing problem. Int. J. Numer. Methods Biomed. Eng. 26(12), 1700–1712 (2010)

    Article  Google Scholar 

  48. Yamakawa, S., Shimada, K.: Automatic all-hex mesh generation of thin-walled solids via a conformal pyramid-less hex, prism, and tet mixed mesh. In: Proceedings of the 20th International Meshing Roundtable, pp. 125–141. Springer (2011)

  49. Zamboj, M.: Sections and shadows of four-dimensional objects. Nexus Netw. J 20(2), 475–487 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Williams.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Availability of data and material

The quadrature rules are available as electronic supplemental material.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ZIP 17.6 KB)

Appendices

Appendix: A. Supplemental material for Theorem 3

Transitional matrices and translation vectors related to the generic finite element transformations from Theorem 3.

$$ \begin{array}{@{}rcl@{}} A_{1}=\left( \begin{array}{cccc} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{1}= \begin{pmatrix} \frac{1}{2}\\-\frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \qquad A_{2}=\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{2}= \begin{pmatrix} -\frac{1}{2}\\-\frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{3}=\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{3}= \begin{pmatrix} -\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \qquad A_{4}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{4}= \begin{pmatrix} \frac{1}{2}\\-\frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{5}=\left( \begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{5}= \begin{pmatrix} \frac{1}{2}\\-\frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \qquad A_{6}=\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{6}= \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ -\frac{1}{2}\\ -\frac{3}{2} \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{7}=\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{7} = \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \qquad A_{8}=\left( \begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{8}= \begin{pmatrix} -\frac{1}{2}\\\ \frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{9}=\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{9}= \begin{pmatrix} -\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \qquad A_{10} = \left( \begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{10} = \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ -\frac{1}{2}\\ -\frac{3}{2} \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{11}=\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{11} = \begin{pmatrix} -\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \qquad A_{12}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) B_{12} = \begin{pmatrix} -\frac{1}{2}\\ \frac{1}{2}\\-\frac{1}{2}\\-\frac{3}{2} \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{13}&=&\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), A_{14}=\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), A_{15}=\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right),\\ A_{16}&=&\left( \begin{array}{cccc} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{17}=\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), A_{18}=\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), B_{i}= \begin{pmatrix} 0\\ 0\\0\\0 \end{pmatrix}, i=13,14,\ldots,18. \end{array} $$

Appendix: B. Supplemental material for Theorem 4

Transitional matrices and translation vectors related to the generic finite element transformations from Theorem 4.

$$ \begin{array}{@{}rcl@{}} \tilde{A}_{1}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \tilde{B}_{1}=\frac{1}{4}\begin{pmatrix}-1\\1\\-1\\-1\\ \end{pmatrix}, \qquad \tilde{A}_{2}=\frac{1}{2}\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \tilde{B}_{2}=\frac{1}{4}\begin{pmatrix}-1\\1\\1\\-1\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{3}=\frac{1}{2}\left( \begin{array}{cccc} 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \tilde{B}_{3}=\frac{1}{4}\begin{pmatrix}2\\2\\0\\-4\\ \end{pmatrix}, \qquad \tilde{A}_{4}=\frac{1}{2}\left( \begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \tilde{B}_{4}=\frac{1}{4}\begin{pmatrix}0\\2\\2\\-4\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{5}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \tilde{B}_{5}=\frac{1}{4}\begin{pmatrix}2\\2\\0\\-4\\ \end{pmatrix}, \qquad \tilde{A}_{6}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{array} \right) \tilde{B}_{6}=\frac{1}{4}\begin{pmatrix}0\\2\\-2\\-4\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{7}=\frac{1}{2}\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \tilde{B}_{7}=\frac{1}{4}\begin{pmatrix}0\\2\\-2\\-4\\ \end{pmatrix}, \qquad \tilde{A}_{8}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \tilde{B}_{8}=\frac{1}{4}\begin{pmatrix}-2\\2\\0\\-4\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{9}=\frac{1}{2}\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \tilde{B}_{9}=\frac{1}{4}\begin{pmatrix}0\\4\\0\\-4\\ \end{pmatrix}, \qquad \tilde{A}_{10}=\frac{1}{2}\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \tilde{B}_{10}=\frac{1}{4}\begin{pmatrix}0\\0\\0\\-4\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{11}=\frac{1}{2}\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \tilde{B}_{11}=\frac{1}{4}\begin{pmatrix}0\\2\\0\\-2\\ \end{pmatrix}, \qquad \tilde{A}_{12}=\frac{1}{2}\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \tilde{B}_{12}=\frac{1}{4}\begin{pmatrix}0\\2\\0\\-2\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{13}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array} \right) \tilde{B}_{13}=\frac{1}{4}\begin{pmatrix}0\\2\\2\\-4\\ \end{pmatrix}, \qquad \tilde{A}_{14}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \tilde{B}_{14}=\frac{1}{4}\begin{pmatrix}-2\\2\\0\\-4\\ \end{pmatrix}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \tilde{A}_{15}=\frac{1}{2}\left( \begin{array}{cccc} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \tilde{B}_{15}=\frac{1}{4}\begin{pmatrix}1\\1\\1\\-1\\ \end{pmatrix}, \qquad A_{16}=\frac{1}{2}\left( \begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) B_{16}=\frac{1}{4}\begin{pmatrix}1\\1\\-1\\-1\\ \end{pmatrix}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, M.S., Todorov, T.D., Walters, G.S. et al. Enabling four-dimensional conformal hybrid meshing with cubic pyramids. Numer Algor 91, 671–709 (2022). https://doi.org/10.1007/s11075-022-01278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01278-y

Keywords

Mathematics Subject Classification (2010)

Navigation