Skip to main content
Log in

A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We develop a formal construction of a pointwise divergence-free basis in the nonconforming virtual element method of arbitrary order for the Stokes problem introduced in Zhao et al. (SIAM J. Numer. Anal. 57(6):2730–2759, 2019). The proposed construction can be seen as a generalization of the divergence-free basis in Crouzeix-Raviart finite element space (Brenner, Math. Comp. 55(192):411–437, 1990; Thomasset, 1981) to the virtual element space. Using the divergence-free basis obtained from our construction, we can eliminate the pressure variable from the mixed system and obtain a symmetric positive definite system. Several numerical tests are presented to confirm the efficiency and the accuracy of our construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  2. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  Google Scholar 

  3. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)

    Article  MathSciNet  Google Scholar 

  4. de Dios, B.A., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    Article  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Virtual element approximation of 2D magnetostatic problems. Comput. Methods Appl. Mech Engrg. 327, 173–195 (2017)

    Article  MathSciNet  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: A family of three-dimensional virtual elements with applications to magnetostatics. SIAM J. Numer. Anal. 56(5), 2940–2962 (2018)

    Article  MathSciNet  Google Scholar 

  8. Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mech. Engrg. 332, 343–362 (2018)

    Article  MathSciNet  Google Scholar 

  9. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  10. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  11. da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    Article  MathSciNet  Google Scholar 

  12. da Veiga, L.B., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  13. da Veiga, L.B., Dassi, F., Manzini, G., Mascotto, L.: Virtual elements for Maxwell’s equations. Comput. Math. Appl. In press (2021)

  14. Brenner, S.C.: A nonconforming multigrid method for the stationary Stokes equations. Math. Comp. 55(192), 411–437 (1990)

    Article  MathSciNet  Google Scholar 

  15. Brezzi, F., Falk, R.S.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  Google Scholar 

  16. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    Article  MathSciNet  Google Scholar 

  17. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R-3), 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  19. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: H(div) and h(curl)-conforming virtual element methods. Numer. Math. 133(2), 303–332 (2016)

    Article  MathSciNet  Google Scholar 

  20. Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53(3), 749–774 (2019)

    Article  MathSciNet  Google Scholar 

  21. Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2018)

    Article  MathSciNet  Google Scholar 

  22. Do, Y., Park, H.: Lowest-order virtual element methods for linear elasticity problems. Comput. Methods Appl. Mech. Kwak Eng. 390:Paper No 114448 (2022)

  23. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    Article  MathSciNet  Google Scholar 

  24. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tang, X., Liu, Z., Zhang, B., Feng, M.: A low-order locking-free virtual element for linear elasticity problems. Comput. Math. Appl. 80 (5), 1260–1274 (2020)

    Article  MathSciNet  Google Scholar 

  26. Thomasset, F.: Implementation of finite element methods for Navier-Stokes equations. Springer Series in Computational Physics. Springer, New York-Berlin (1981)

    Book  Google Scholar 

  27. Zhang, B., Zhao, J., Yang, Y., Chen, S.: The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378, 394–410 (2019)

    Article  MathSciNet  Google Scholar 

  28. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhao, J., Zhang, B., Mao, S., Chen, S.: The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57(6), 2730–2759 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is partially supported by NRF, contract no. 2021R1A2C1003340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Y. Kwak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, D.Y., Park, H. A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem. Numer Algor 91, 449–471 (2022). https://doi.org/10.1007/s11075-022-01269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01269-z

Keywords

Mathematics Subject Classification (2010)

Navigation