Skip to main content
Log in

In reference to a self-referential approach towards smooth multivariate approximation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Approximation of a multivariate function is an important theme in the field of numerical analysis and its applications, which continues to receive a constant attention. In this paper, we provide a parameterized family of self-referential (fractal) approximants for a given multivariate smooth function defined on an axis-aligned hyper-rectangle. Each element of this class preserves the smoothness of the original function and interpolates the original function at a prefixed gridded data set. As an application of this construction, we deduce a fractal methodology to approach a multivariate Hermite interpolation problem. This part of our paper extends the classical bivariate Hermite’s interpolation formula by Ahlin (Math. Comp. 18:264–273, 1964) in a twofold sense: (i) records, in particular, a multivariate generalization of this bivariate interpolation theory; (ii) replaces the unicity of the Hermite interpolant with a parameterized family of self-referential Hermite interpolants which contains the multivariate analogue of Ahlin’s interpolant as a particular case. Some related aspects including the approximation by multivariate self-referential functions preserving Popoviciu convexity are given, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bajraktarević, M.: Sur une équation fonctionelle. Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II(12), 201–205 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Barbosu, D.: Some Hermite bivariate interpolation procedures. Bul. Stiint. Univ. Baia Marc. Ser B Math.-Inf. 14, 5–14 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Barnsley, M. F.: Fractal functions and interpolation. Constr. Approx. 2, 303–32 (1986)

    Article  MathSciNet  Google Scholar 

  4. Barnsley, M. F.: Fractal Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  5. Bouboulis, P., Dalla, L., Drakopoulos, V.: Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension. J. Approx. Theory 141, 99–117 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bouboulis, P., Dalla, L.: A general construction of fractal interpolation functions on grids of \(\mathbb {R}^{n}\). Eur. J. Appl. Math. 18, 449–476 (2007)

    Article  MathSciNet  Google Scholar 

  7. Carvalho, A., Caetano, A.: On the Hausdorff Dimension of Continuous Functions Belonging to hölder and Besov Spaces on Fractal d-Sets. J. Fourier Anal. Appl. 18, 386–409 (2012)

    Article  MathSciNet  Google Scholar 

  8. Casazza, P. G., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3, 543–557 (1997)

    Article  MathSciNet  Google Scholar 

  9. Chand, A. K. B., Kapoor, G. P.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11, 277–288 (2003)

    Article  MathSciNet  Google Scholar 

  10. Chawla, M. M., Jayanarayan, N.: A generalization of Hermite’s interpolation formula in two variables. J. Austral. Math. Soc. 18, 402–410 (1974)

    Article  MathSciNet  Google Scholar 

  11. Ciesielski, Z., Domsta, J.: Construction of an orthonormal basis in cm(id) and \({w_{p}^{m}}(i^{d})\). Studia Math. 41, 211–224 (1972)

    Article  MathSciNet  Google Scholar 

  12. Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals 10, 53–58 (2002)

    Article  MathSciNet  Google Scholar 

  13. Donovan, G. C., Geronimo, J. S., Hardin, D. P., Massopust, P.R.: Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal. 27, 1158–1192 (1996)

    Article  MathSciNet  Google Scholar 

  14. Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Feng, Z.: Variation and Minkowski dimension of fractal interpolation surfaces. J. Math. Anal. Appl. 345, 322–334 (2008)

    Article  MathSciNet  Google Scholar 

  16. Gal, S. G.: Shape preserving approximation by real and complex polynomials. Birkhäuser, Boston (2008)

  17. Geronimo, J. S., Hardin, D.: Fractal interpolation surfaces and a related 2D multiresolution analysis. J. Math. Anal. Appl. 176, 561–586 (1993)

    Article  MathSciNet  Google Scholar 

  18. Geronimo, J. S., Hardin, D. P., Massopust, P. R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78, 373–401 (1994)

    Article  MathSciNet  Google Scholar 

  19. Hardin, D. P., Kessler, B., Massopust, P. R.: Multiresolution analyses based on fractal functions. J. Approx. Theory 71, 104–120 (1992)

    Article  MathSciNet  Google Scholar 

  20. Hardin, D. P., Massopust, P. R.: Fractal interpolation function from \(\mathbb {R}^{n}\) to \(\mathbb {R}^{m}\) and their projections. Z. Anal. Anwend. 12, 561–586 (1993)

    Article  MathSciNet  Google Scholar 

  21. Heil, C.: A Basis Theory Primer, Manuscript. Available online at http://www.math.gatech.edu/~heil/papers/bases.pdf (1997)

  22. Hutchinson, J.: Fractals and self-similarity. Ind. Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  23. Lorentz, R. A.: Multivariate Hermite interpolation by algebraic polynomials: a survey. J. Comp. Appl. Math. 122, 167–201 (2000)

    Article  MathSciNet  Google Scholar 

  24. Massopust, P. R.: Fractal Surfaces. J. Math. Anal. Appl. 151, 275–290 (1990)

    Article  MathSciNet  Google Scholar 

  25. Massopust, P. R.: Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  26. Metzler, W., yun, C. H.: Construction of fractal interpolation surfaces on rectangular grids. Inter. J. Bifurc. Chaos 20, 4079–4086 (2010)

    Article  MathSciNet  Google Scholar 

  27. Navascués, M. A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25, 401–418 (2005)

    Article  MathSciNet  Google Scholar 

  28. Navascués, M. A.: Fractal approximation. Complex Anal. Oper. Theory 4, 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  29. Navascués, M. A.: Fractal Haar System. Nonlin. Anal. 74, 4152–4165 (2011)

    Article  MathSciNet  Google Scholar 

  30. Navascués, M. A., Sebastián, M. V.: Generalization of Hermite functions by fractal interpolation. J. Approx. Theory 131, 19–29 (2004)

    Article  MathSciNet  Google Scholar 

  31. Navascués, M.A., Mohapatra, R.N., Akhtar, M.N.: Construction of Fractal Surfaces. Fractals 28, 2050033, 13 (2020)

  32. Read, A. H.: The solution of a functional equation. Proc. Roy. Soc. Edinburgh Sect. A 63(1951-52), 336–345

  33. Ruan, H. -J., Xu, Q.: Fractal interpolation surfaces on Rectangular Grids. Bull. Aust. Math. Soc. 91, 435–446 (2015)

    Article  MathSciNet  Google Scholar 

  34. Spitzbart, A.: A generalization of Hermite’s interpolation formula. Amer. Math. Monthly 67, 42–46 (1960)

    Article  MathSciNet  Google Scholar 

  35. Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation function on rectangular grids. Res. Math. 75, 26 (2020)

  36. Verma, S., Viswanathan, P.: Parameter identification for a class of bivariate fractal Interpolation functions and constrained approximation. Numer. Func. Anal. Opt. 41, 1109–1148 (2020)

    Article  MathSciNet  Google Scholar 

  37. Verma, S., Viswanathan, P.: A revisit to α-fractal function and box dimesnion of its graph. Fractals 27(6), 15 (2019)

  38. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: Fractal dimension and fractional integral. Indag. Math. 31(2), 294–309 (2020)

    Article  MathSciNet  Google Scholar 

  39. Viswanathan, P., Chand, A. K. B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)

    Article  MathSciNet  Google Scholar 

  40. Viswanathan, P., Navascués, M. A., Chand, A. K. B.: Associate fractal functions in lp −spaces and in one-sided uniform approximation. J. Math. Anal. Appl. 433, 862–876 (2016)

    Article  MathSciNet  Google Scholar 

  41. Wang, H. -Y., Yu, J. -S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  42. Xie, H., Sun, H.: The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5, 625–634 (1997)

    Article  MathSciNet  Google Scholar 

  43. Zhao, N.: Construction and application of fractal interpolation surfaces. Vis. Comput. 12, 132–146 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The second author is thankful to the project CRG/2020/002309 from the Science and Engineering Research Board (SERB), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Viswanathan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, K.K., Viswanathan, P. In reference to a self-referential approach towards smooth multivariate approximation. Numer Algor 91, 251–281 (2022). https://doi.org/10.1007/s11075-022-01261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01261-7

Keywords

Mathematics Subject Classification (2010)

Navigation