Skip to main content
Log in

Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we exploit the Strang splitting technique for solving the multidimensional Allen-Cahn equations with anisotropic spatial fractional Riesz derivatives. Fully discrete numerical methods are proposed using exponential Strang’s splitting schemes for the time integration with finite difference discretization in space. It is proved that the proposed methods can preserve the discrete maximum principle unconditionally. Furthermore, the fully discrete methods are theoretically confirmed to be convergent with second-order accuracy in both of time and space. In practical implementation, the proposed algorithms require to compute the matrix exponential associated with only one-dimensional discretized matrices that possess Toeplitz structure. Meanwhile, a fast algorithm is further developed for evaluating the product of the Toeplitz matrix exponential with a vector. Numerical examples are presented to verify the theoretical analysis and demonstrate the efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT 54, 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Sun, H.-W.: A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations. J. Sci. Comput. 87, 30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Q., Yang, J.: Asymptotic compatible Fourier spectral approximations of nonlocal Allen-Cahn equations. SIAM J. Numer. Anal. 54, 1899–1919 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. 63, 317–359 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Numerica 29, 1–124 (2020)

    Article  MathSciNet  Google Scholar 

  10. Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, X., Song, H., Tang, T., Yang, J.: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Probl. Imaging 7, 679–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integral Equ. Oper. Theory. 15, 730–743 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Hansen, E., Kramer, F., Ostermann, A.: A second-order positivity preserving scheme for semilinear parabolic problems. Appl. Numer. Math. 62, 1428–1435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansen, E., Ostermann, A.: High-order splitting schemes for semilinear evolution equations. BIT 56, 1303–1316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  19. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

  20. Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numerica 19, 159–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  22. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jahnke, T., Lubich, C.: Error bounds for exponential operator splitting. BIT 40, 735–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys. 439, 110405 (2021)

    Article  MathSciNet  Google Scholar 

  25. Lee, S., Liu, X., Sun, H. -W.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19, 87–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, S., Pang, H., Sun, H.-W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58, 2294–2314 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  29. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  30. Pang, H., Sun, H.-W.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  32. Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Söderlind, G.: The logarithmic norm. History and modern theory. BIT 46, 631–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trefethen, L.N., Weideman, J.A.C., Schmelzer, T.: Talbot quadratures and rational approximations. BIT 46, 653–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X.: Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11, 1057–1070 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31, 3042–3063 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, L., Zhang, Q., Sun, H.: Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. J. Sci. Comput. 83, 59 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the National Natural Science Foundation of China (Grant No.11971085), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJQN202000543), and the Program of Chongqing Innovation Research Group Project in University (No. CXQT19018). The second author was partially supported by research grants of the Science and Technology Development Fund, Macau SAR (file no. 0118/2018/A3), and MYRG2020-00224-FST from University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, HW. Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations. Numer Algor 90, 749–771 (2022). https://doi.org/10.1007/s11075-021-01207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01207-5

Keywords

Mathematics Subject Classification (2010)

Navigation