Skip to main content

On the generalized AOR and CG iteration methods for a class of block two-by-two linear systems

Abstract

In this work, we utilize the generalized AOR (GAOR) and CG (GCG) methods for constructing iteration methods to solve the block two-by-two linear systems which arise from the solution of the complex symmetric linear systems of equations. In order to compare the GAOR and GCG methods with some existing methods, we present some numerical examples to illustrate the performance of these methods.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15, 41–93 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Howle, V.E., Vavasis, S.A.: An iterative method for solving complex-symmetric systems arising in electrical power modeling. SIAM J. Matrix Anal. Appl. 26, 1150–1178 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    van Dijk, W., Toyama, F.M.: Accurate numerical solutions of the time-dependent schrödinger equation. Phys. Rev. E. 75, 1–10 (2007)

    Google Scholar 

  4. 4.

    Poirier, B.: Efficient preconditioning scheme for block partitioned matrices with structured sparsity. Numer. Linear Algebra Appl. 7, 715–726 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7, 197–218 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithm 66, 811–841 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Benzi, M., Bertaccini, D.: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28, 598–618 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Bai, Z.-Z.: Block preconditioners for elliptic PDE-constrained optimization problems. Computing 91, 379–395 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    van der Vorst, H.A., Melissen, J.B.M.: A Petrov-Galerkin type method for solving Ax = b, where A is symmetric complex. IEEE Trans. Magn. 26, 706–708 (1990)

    Article  Google Scholar 

  10. 10.

    Freund, R.W.: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Matrix Anal. Appl. 13, 425–448 (1992)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Sogabe, T., Zhang, S.-L.: A COCR method for solving complex symmetric linear systems. J. Comput. Appl. Math. 199, 297–303 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Bunse-Gerstner, A., Stöver, R.: On a conjugate gradient-type method for solving complex symmetric linear systems. Linear Algbra Appl. 287, 105–123 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Gu, X.-M., Clemens, M., Huang, T.-Z.: The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems. Comput. Phys. Commun. 191, 52–64 (2015)

    MATH  Article  Google Scholar 

  14. 14.

    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS Iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithm 56, 297–317 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Dehghan, M., Dehghani-Madiseh, M., Hajarian, M.: A generalized preconditioned MHSS method for a class of complex symmetric linear systems. Math. Model. Anal. 18, 561–576 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA Journal of Numerical Analysis 27, 1–23 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. IMA J. Numer. Anal. 16, 447–479 (2009)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102, 1–38 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Li, L., Huang, T.-Z., Liu, X.-P.: Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numer. Linear Algebra Appl. 14, 217–235 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Li, X., Yang, A.-L., Wu, Y.-J.: Lopsided PMHSS Iteration method for a class of complex symmetric linear systems. Numer. Algorithm 66, 555–568 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Zheng, Q.-Q., Ma, C.-F., Accelerated, PMHSS: Iteration methods for complex symmetric linear systems. Numer. Algorithm 73, 501–516 (2016)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Yang, A.-L., Wu, Y.-J., Xu, Z.-J.: The semi-convergence properties of MHSS method for a class of complex nonsymmetric singular linear systems. Numer. Algorithm 66, 705–719 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Cao, Y., Ren, Z.-R.: Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems. Appl. Math. Comput. 264, 61–71 (2015)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Bai, Z.-Z.: Several splittings for non-Hermitian linear systems. Sci. Chin. Ser. A: Math. 51, 1339–1348 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Wu, S.-L.: Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems. Numerical Linear Algebra with Applications 22, 338–356 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Hezari, D., Salkuyeh, D.K., Edalatpour, V.: A new iterative method for solving a class of complex symmetric system of linear equations. Numer. Algorithm 73, 927–955 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Zheng, Z., Huang, F.-L., Peng, Y.-C.: Double-step scale splitting iteration method for a class of complex symmetric linear systems. Appl. Math. Lett. 73, 91–97 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Wang, T., Zheng, Q.-Q., Lu, L.-Z.: A new iteration method for a class of complex symmetric linear systems. J. Comput. Appl. Math. 325, 188–197 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Bai, Z.-Z.: Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. Numer. Linear Algebra Appl. 25, e2116:1–19 (2018)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Salkuyeh, D.K., Hezari, D., Edalatpour, V.: Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 92, 802–815 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Zheng, Q.-Q., Ma, C.-F.: A class of triangular splitting methods for saddle point problems. J. Comput. Appl. Math. 298, 13–23 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Li, J.-T., Ma, C.-F.: The parameterized upper and lower triangular splitting methods for saddle point problems. Numer. Algorithm 76, 1–13 (2017)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Li, X.-A., Zhang, W.-H., Wu, Y.-J.: On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations. Appl. Math. Lett. 79, 131–137 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539–552 (2006)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Zeng, M.-L., Zhang, G.-F.: Generalized shift-splitting iteration method for a class of two-by-two linear systems. J. Appl. Math. Comput. 53, 1–13 (2015)

    MathSciNet  Google Scholar 

  39. 39.

    Liang, Z.-Z., Zhang, G.-F.: On SSOR iteration method for a class of block two-by-two linear systems. Numer. Algorithm 71, 1–17 (2015)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Chen, C.-R., Ma, C.-F.: AOR-Uzawa iterative method for a class of complex symmetric linear system of equations. Comput. Math. Appl. 72, 2462–2472 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Hadjidimos, A.: Accelerated overrelaxation method. Math. Comput. 32, 149–157 (1978)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Li, C., Li, Z., Nie, Y.Y., Evans, D.J.: Generalized AOR method for the augmented system. Int. J. Comput. Math. 81, 495–504 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Zhang, C.-H., Wang, X., Tang, X.-B.: Generalized AOR method for solving a class of generalized saddle point problems. J. Comput. Appl. Math. 350, 69–79 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Concus, P., Golub, G.H.: A generalized conjugate gradient method for nonsymmetric systems of linear equations. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences and Engineering, Lecture Notes in Economics and Mathematical Systems, vol. 134, pp 56–65. Springer, Berlin (1976)

  46. 46.

    Widlund, O.: A Lanczos method for a class of unsymmetric systems of linear equations. SIAM J. Numer. Anal. 19, 485–506 (1982)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Eisenstat, S.C.: A note on the generalized conjugate gradient method. SIAM J. Numer. Anal. 20, 358–361 (1983)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to the editor and reviewers for their constructive and valuable comments and suggestions which greatly improved the original manuscript of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fariba Bakrani Balani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balani, F.B., Hajarian, M. On the generalized AOR and CG iteration methods for a class of block two-by-two linear systems. Numer Algor (2021). https://doi.org/10.1007/s11075-021-01203-9

Download citation

Keywords

  • Complex symmetric linear systems
  • Block two-by-two matrix
  • GAOR method
  • GCG method
  • Preconditioner
  • Iteration methods

Mathematics Subject Classification (2010)

  • 65F10