Skip to main content
Log in

All-at-once method for variable-order time fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose a fast solver for the variable-order (VO) time-fractional diffusion equation. Due to the impact of the time-dependent VO function, the resulting coefficient matrix of the large linear system assembling discrete equations of all time levels is a block lower triangular matrix without the block Toeplitz structure. Here, we approximate the off-diagonal blocks by low-rank matrices based on the polynomial interpolation, which can be constructed in \(\mathcal {O}(M\log ^{2} M)\) operations with the same number storage requirement, where M is the number of time steps. Furthermore, a divide-and-conquer method is developed to fast solve the approximated linear system. The proposed solver can be implemented in \(\mathcal {O} (NM\log ^{2} M)\) complexity with N being the degree of freedom in space. The accuracy of approximation is theoretically studied, and the stability and convergence of the proposed fast method are also investigated. Numerical experiments are carried out to exemplify the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bebendorf, M.: Hierarchical LU decomposition-based preconditioners for BEM. Computing 74, 225–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bebendorf, M.: Hierarchical matrices Springer Berlin Heidelberg (2008)

  3. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1413 (2000)

    Article  Google Scholar 

  4. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  5. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing. 72, 325–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasma 8, 5096–5103 (2001)

    Article  Google Scholar 

  8. Chan, R., Lin, F., Ng, W.: Fast dense matrix method for the solution of integral equations of the second kind. Numer. Math. J. Chinese Univ. (English Ser.) 7, 105–120 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 643–736 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing. SIAM Philadelphia (2008)

  11. Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, R., Alikhanov, A.A., Sun, Z.: Temporal second order difference schemes for the multi-dimensional variable-order time fractional subdiffusion equations. Comput. Math. Appl. 79, 2952–2972 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fong, W., Darve, E.: The black-box fast multipole method. J. Comput. Phys. 228, 8712–8725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu, H., Ng, M., Wang, H.: A divide-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73, 1233–1242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, G., Sun, Z.: A Compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transfer 45, 219–226 (2008)

    Article  MATH  Google Scholar 

  18. Gu, X., Wu, S.: A parallel-in-time iterative algorithm for volterra partial integro-differential problems with weakly singular kernel. J. Comput. Phys. 109576, 417 (2020)

    MathSciNet  Google Scholar 

  19. Hackbusch, W.: Hierarchical matrices: algorithms an analysis. Springer Ser. Comput Math, vol. 49. Springer, Heidelberg (2015)

    Book  Google Scholar 

  20. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 69, 119–133 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ho, K.L., Ying, L.: Hierarchical interpolative factorizaiton for elliptic operators: differential equations. Comm. Pure Appl. Math. 69, 1314–1353 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, Y., Lei, S.: A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations. Numer. Algor. 76, 605–616 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)

    Article  Google Scholar 

  24. Jia, J., Wang, H., Zheng, X.: A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. J. Comput. Appl. Math. 388, 113234 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jia, J., Wang, H., Zheng, X.: A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. Appl. Numer. Math. 163, 15–29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.: A fast method for variable-order space-fractional diffusion equations. Numer. Algor. 85, 1519–1540 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ke, R., Ng, M., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equation. J. Comput. Phys. 303, 203–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kikuchi, K., Negoro, A.: On markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285–289 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kressner, D., Massei, S., Robol, L.: Low-rank updates and a divide-and-conquer method for linear matrix equations. SIAM. J. Sci. Comput. 41, A848–A876 (2019)

    MATH  Google Scholar 

  32. Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Tech. 9, 408–416 (2017)

    Google Scholar 

  33. Lin, X., Ng, M.: A fast solver for multidimensional time-space fractional diffusion equation with variable coefficients. Comput. Math. Appl. 78, 1477–1489 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dynam. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lu, X., Pang, H., Sun, H.: Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Linear Algebra Appl. 22, 866–882 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, X., Pang, H., Sun, H., Vong, S.: Approximate inversion method for time-fractional subdiffusion equations. Numer. Linear Algebra Appl. 25, e2132 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Magin, R.L.: Fractional calculus in bioengineering begell house publishers (2006)

  38. Massei, S., Mazza, M., Robol, L.: Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices. SIAM J. Sci. Comput. 41, A2627–A2656 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)

    Article  Google Scholar 

  40. Pang, H., Sun, H.: A fast algorithm for the variable-order spatial fractional advection-diffusion equation. J. Sci. Comput. 87, 15 (2021)

    Article  MathSciNet  Google Scholar 

  41. Pedro, H., Kobayashi, M., Pereira, J., Coimbra, C.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  43. Ramirez, L.E.S., Coimbra, C.F.M.: A variable order constitutive relation for viscoelasticity. Ann. Phys.(Leipzig) 16, 543–552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rebenshtok, A., Denisov, S., Hänggi, P., Barkai, E.: Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601 (2014)

    Article  Google Scholar 

  45. Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)

    MathSciNet  Google Scholar 

  46. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and spplications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  47. Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equation: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  51. Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)

    Article  Google Scholar 

  52. Tyrtyshnikov, H.: Kronecker-product approximations for some function-related matrices. Linear Algebra Appl. 379, 423–437 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vogel, J., Xia, J., Cauley, S., Balakrishnan, V.: Superfast divide-and-conquer method and perturbation analysis for structured eigenvalue solutions: SIAM. J. Sci. Comput. 38, A1358–A1382 (2016)

    MATH  Google Scholar 

  54. Wang, H., Zheng, X.: Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. 45, 2647–2675 (2019)

    Article  MathSciNet  Google Scholar 

  55. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equation. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. West, B.J., Grigolini, P., Metzler, R., Nonnenmacher, T.F.: Fractional diffusion and lëvy stable processes. Phys. Rev. E 55, 99–106 (1997)

    Article  MathSciNet  Google Scholar 

  57. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM. J. Sci. Comput. 20, 699–718 (1998)

    MathSciNet  MATH  Google Scholar 

  59. Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Rev. E 48, 1683–1694 (1993)

    MathSciNet  Google Scholar 

  60. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM. J. Sci. Comput. 37, A2710–A2732 (2015)

    MATH  Google Scholar 

  61. Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM. J. Imaging Sci. 8, 2487–2518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhao, X., Hu, X., Cai, W., Karniadakis, G.: Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Methods Appl. Mech. Engrg. 325, 56–76 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhao, X., Sun, Z., Karniadakis, G.: Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA. J. Numer. Anal. 41, 1522–1545 (2021)

    Article  MathSciNet  Google Scholar 

  65. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM. J. Mumer. Anal. 47, 1760–1781 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for valuable comments and suggestions which lead to a significant improvement of the presentation.

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11771189, 12090011, 11501562), the Natural Science Foundation of Jiangsu Province (Grant No. BK20171162), the Qing-Lan Project of Jiangsu Higher Education Institutions, the Fundamental Research Funds for the Central Universities (Grant No. 2015QNA49), the Science and Technology Development Fund, Macau SAR (file no. 0118/2018/A3), and MYRG2018-00015-FST from University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Hua Qin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, HK., Qin, HH. & Sun, HW. All-at-once method for variable-order time fractional diffusion equations. Numer Algor 90, 31–57 (2022). https://doi.org/10.1007/s11075-021-01178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01178-7

Keywords

Mathematics Subject Classification (2010)

Navigation