Skip to main content

Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems

Abstract

We study variational inequalities and fixed point problems in real Hilbert spaces. A new algorithm is proposed for finding a common element of the solution set of a pseudo-monotone variational inequality and the fixed point set of a demicontractive mapping. The advantage of our algorithm is that it does not require prior information regarding the Lipschitz constant of the variational inequality operator and that it only computes one projection onto the feasible set per iteration. In addition, we do not need the sequential weak continuity of the variational inequality operator in order to establish our strong convergence theorem. Next, we also obtain an R-linear convergence rate for a related relaxed inertial gradient method under strong pseudo-monotonicity and Lipschitz continuity assumptions on the variational inequality operator. Finally, we present several numerical examples which illustrate the performance and the effectiveness of our algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Anh, P.K., Thong, D.V., Vinh, N.T.: Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization. https://doi.org/10.1080/02331934.2020.1808644 (2020)

  2. 2.

    Antipin, A. S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. Mat. Metody 12, 1164–1173 (1976)

    Google Scholar 

  3. 3.

    Cai, X., Gu, G., He, B.: On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cai, G., Shehu, Y., Iyiola, O. S.: Iterative algorithms for solving variational inequalities and fixed point problems for asymptotically nonexpansive mappings in Banach spaces. Numer. Algor. 73, 869–906 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cai, G., Shehu, Y., Iyiola, O. S.: The modified viscosity implicit rules for variational inequality problems and fixed point problems of nonexpansive mappings in Hilbert spaces. RACSAM 113, 3545–3562 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ceng, L. C., Hadjisavvas, N., Wong, N. C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ceng, L. C., Teboulle, M., Yao, J. C.: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixedpoint problems. J. Optim. Theory Appl. 146, 19–31 (2010)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithm. 59, 301–323 (2012)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26, 827–845 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Cholamjiak, P., Thong, D. V., Cho, Y. J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl Math 169, 217–245 (2020)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cottle, R. W., Yao, J. C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Dong, Q. L., Gibali, A., Jiang, D., Ke, S. H.: Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery. J. Fixed Point Theory Appl. 20, 16 (2018). https://doi.org/10.1007/s11784-018-0501-1

    MathSciNet  Article  Google Scholar 

  15. 15.

    Dong, L. Q., Cho, Y. J., Zhong, L. L., Rassias, M. T. h.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Gibali, A., Shehu, Y.: An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces. Optimization 68, 13–32 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    He, B. S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    MathSciNet  Article  Google Scholar 

  18. 18.

    He, S. N., Tian, H. L.: Selective projection methods for solving a class of variational inequalities. Numer. Algorithm. 80, 617–634 (2019)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inversestrongly monotone mappings. Nonlinear Anal. 61, 341–350 (2005)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Iiduka, H., Yamada, I.: A subgradient-type method for the equilibrium problem over the fixed point set and its applications. Optimization. 58, 25–261 (2009)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Iiduka, H.: Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping. Math. Program. Ser. A 149, 131–165 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Korpelevich, G. M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Liu, H., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl. 77, 491–508 (2020)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Maingé, P. E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Maingé, P. E.: Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints. Eur. J. Oper. Res. 205, 501–506 (2010)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Malitsky, Y. V., Semenov, V. V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Malitsky, Y. V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2016)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  31. 31.

    Shehu, Y., Ogbuisi, F. U.: An iterative algorithm for approximating a solution of split common fixed point problem for demi-contractive maps. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithm. 23, 205–216 (2016)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Shehu, Y., Iyiola, O. S.: Iterative algorithms for solving fixed point problems and variational inequalities with uniformly continuous monotone operators. Numer. Algor. 79, 529–553 (2018)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Shehu, Y., Dong, Q. L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68, 385–409 (2019)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019)

  35. 35.

    Sun, D. F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Solodov, M. V., Svaiter, B. F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Thong, D. V., Hieu, D. V.: Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 67, 83–102 (2018)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Vuong, P. T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality operators over the problem certain fixed point set of quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Yang, J., Liu, H.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithm. 80, 741–752 (2019)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Yao, Y., Postolache, M.: Iterative methods for pseudomonotone variational inequalities and fixed point problems. J. Optim. Theory Appl. 155, 273–287 (2012)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Zhao, P. X., Yao, Y.: Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems. Optimization 69, 1987–2002 (2020)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to an anonymous referee for several pertinent comments and useful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Linh, H.M., Reich, S., Thong, D.V. et al. Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems. Numer Algor (2021). https://doi.org/10.1007/s11075-021-01169-8

Download citation

Keywords

  • Contraction and projection method
  • Convergence rate
  • Demicontractive mapping
  • Fixed point problem
  • Inertial method
  • Relaxed inertial gradient method
  • Strong convergence
  • Variational inequality problem

Mathematics Subject Classification (2010)

  • 47H09
  • 47J20
  • 65K15
  • 90C25