Skip to main content

A two-parameter block triangular preconditioner for double saddle point problem arising from liquid crystal directors modeling

Abstract

To improve the performance of block triangular (BT) preconditioner, we develop a two-parameter BT (TPBT) preconditioner for a double saddle point problem arising from liquid crystal directors modeling. Theoretical analysis shows that all the eigenvalues of the TPBT preconditioned coefficient matrix are real and located in an interval (0, 2) no matter which value the spectral radius of matrix D− 1CA− 1CT is chosen. Moreover, an upper bound of the degree of the minimal polynomial of the TPBT preconditioned coefficient matrix is also obtained. Inasmuch as the efficiency of the TPBT preconditioner depends on the values of its parameters, we further derive a class of fast and effective formulas to compute the quasi-optimal values of the parameters involved in the TPBT preconditioner. Finally, numerical results are reported to illustrate the feasibility and the efficiency of the TPBT preconditioner.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Stewart, I.W.: The static and dynamic continuum theory of liquid crystals: A mathematical introduction. Taylor and Francis, London (2004)

    Google Scholar 

  2. 2.

    de Gennes, P.G., Prost, J.: The physics of liquid crystals, 2nd edn. Clarendon Press, Oxford (1993)

    Google Scholar 

  3. 3.

    Ramage, A., Gartland Jr, E.C.: A preconditioned nullspace method for liquid crystal director modeling. SIAM J. Sci. Comput. 35(1), B226–B247 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (3), 1072–1092 (1997)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11-12), 2900–2932 (2008)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT Numer. Math. 41(1), 71–85 (2001)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102(1), 1–38 (2005)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Guo, P., Li, C.-X., Wu, S.-L.: A modified SOR-like method for the augmented systems. J. Comput. Appl. Math. 274(1), 58–69 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2005)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Bai, Z-Z, Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Huang, T.-Z., Wu, S.-L., Li, C.-X.: The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems. J. Comput. Appl. Math. 229(1), 37–46 (2009)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Jiang, M.-Q., Cao, Y.: On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems. J. Comput. Appl. Math. 231(2), 973–982 (2009)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Bai, Z.-Z., Wang, Z.-Q.: Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. J. Comput. Appl. Math. 187, 202–226 (2006)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71–78 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24, 368–391 (2002)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia, PA, USA (2003)

    Book  Google Scholar 

  18. 18.

    Dollar, H.S.: Constraint-style preconditioners for regularized saddle-point problems. SIAM J. Matrix Anal. Appl. 29, 672–684 (2006)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 31, 410–433 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Cao, Z.-H.: A class of constraint preconditioners for nonsymmetric saddle-point matrices. Numer. Math. 103, 47–61 (2006)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Grigori, L., Niu, Q., Xu, Y.-X.: Stabilized dimensional factorization preconditioner for solving incompressible Navier-Stokes equations. Appl. Numer. Math. 146, 309–327 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Shen, S.-Q.: A note on PSS preconditioners for generalized saddle point problems. Appl. Math. Comput. 237, 723–729 (2014)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Shen, Q.-Q., Shi, Q.: Generalized shift-splitting preconditioners for nonsingular and singular generalized saddle point problems. Comput. Math. Appl. 72, 632–641 (2016)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Cao, Y., Li, S.: Block triangular preconditioners based on symmetric-triangular decomposition for generalized saddle point problems. Appl. Math. Comput. 358, 262–277 (2019)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Beik, F.P.A., Benzi, M.: Block preconditioners for saddle point systems arising from liquid crystal directors modeling. Calcolo 55(3), 29 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Beik, F.P.A., Benzi, M.: Iterative methods for double saddle point systems. SIAM J. Matrix Anal. Appl. 39(2), 902–921 (2018)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Liang, Z.-Z., Zhang, G.-F.: Alternating positive semidefinite splitting preconditioners for double saddle point problems. Calcolo 56(3), 26 (2019)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Benzi, M., Deparis, S., Grandperrin, G., Quarteroni, A.: Parameter estimates for the relaxed dimensional factorization preconditioner and application to hemodynamics. Comput. Methods Appl. Mech. Eng. 300, 129–145 (2016)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Horn, R.A., Johnson, C.R.: Matrix analysis. 2nd edn. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  30. 30.

    Zhu, J.-L., Yang, A.-L., Wu, Y.-J.: A parameterized deteriorated PSS preconditioner and its optimization for nonsymmetric saddle point problems. Comput. Math. Appl. 79, 1420–1434 (2020)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to the referees for their constructive and valuable comments and suggestions which greatly improved the original manuscript of this paper.

Funding

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11471150, 11401281) and the National Key Research and Development Program of China (Grant No. 2018YFC0406600).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu-Jiang Wu or Ai-Li Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, JL., Wu, YJ. & Yang, AL. A two-parameter block triangular preconditioner for double saddle point problem arising from liquid crystal directors modeling. Numer Algor (2021). https://doi.org/10.1007/s11075-021-01142-5

Download citation

Keywords

  • Double saddle point problem
  • TPBT preconditioner
  • Eigenvalue analysis
  • Preconditioned matrix
  • Optimal parameter

Mathematics Subject Classification (2010)

  • 65F08
  • 65F10
  • 65F20