Skip to main content

Accurate error estimation in CG


In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A. During the iterations, it is important to monitor the quality of the approximate solution xk so that the process could be stopped whenever xk is accurate enough. One of the most relevant quantities for monitoring the quality of xk is the squared A-norm of the error vector xxk. This quantity cannot be easily evaluated; however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared A-norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper, we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8




  1. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Stand. 49, 409–436 (1952)

    MathSciNet  Article  Google Scholar 

  2. Arioli, M.: A stopping criterion for the conjugate gradient algorithms in a finite element method framework. Numer. Math. 97(1), 1–24 (2004)

    MathSciNet  Article  Google Scholar 

  3. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010)

    MathSciNet  Article  Google Scholar 

  4. Arioli, M., Georgoulis, E.H., Loghin, D.: Stopping criteria for adaptive finite element solvers. SIAM J. Sci. Comput. 35(3), A1537–A1559 (2013)

    MathSciNet  Article  Google Scholar 

  5. Dolejší, V., Tichý, P.: On efficient numerical solution of linear algebraic systems arising in goal-oriented error estimates. J. Sci. Comput. 83(1), 1–29 (2020)

    MathSciNet  Article  Google Scholar 

  6. Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl. 113, 7–63 (1989)

    MathSciNet  Article  Google Scholar 

  7. Greenbaum, A., Strakoš, Z: Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl. 13 (1), 121–137 (1992)

    MathSciNet  Article  Google Scholar 

  8. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980)

    MathSciNet  Article  Google Scholar 

  9. Meurant, G.: The Lanczos and conjugate gradient algorithms: From theory to finite precision computations, Software, Environments, and Tools, vol. 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)

  10. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15, 471–542 (2006)

    MathSciNet  Article  Google Scholar 

  11. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Numerical analysis 1993 (Dundee, 1993). Longman Sci. Tech., Harlow, vol. 303, pp 105–156. Pitman Res. Notes Math. Ser. (1994)

  12. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithm. 8(2-4), 241–268 (1994)

    MathSciNet  Article  Google Scholar 

  13. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods. BIT 37(3), 687–705 (1997)

    MathSciNet  Article  Google Scholar 

  14. Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13, 56–80 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Meurant, G., Tichý, P.: On computing quadrature-based bounds for the A-norm of the error in conjugate gradients. Numer. Algorithm. 62(2), 163–191 (2013)

    MathSciNet  Article  Google Scholar 

  16. Meurant, G., Tichý, P.: Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG. Numer. Algorithm. 82(3), 937–968 (2019)

    MathSciNet  Article  Google Scholar 

  17. Strakoš, Z., Tichý, P.: Error estimation in preconditioned conjugate gradients. BIT 45(4), 789–817 (2005)

    MathSciNet  Article  Google Scholar 

  18. Meurant, G.: Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm. Numer. Algorithm. 22(3-4), 353–365 (1999)

    MathSciNet  Article  Google Scholar 

  19. Gergelits, T., Mardal, K.-A., Nielsen, B.F., Strakoš, Z.: Laplacian preconditioning of elliptic PDEs: localization of the eigenvalues of the discretized operator. SIAM J. Numer. Anal. 57(3), 1369–1394 (2019)

    MathSciNet  Article  Google Scholar 

  20. Gergelits, T., Nielsen, B.F., Strakoš, Z.: Generalized spectrum of second order differential operators. SIAM J. Numer. Anal. 58(4), 2193–2211 (2020)

    MathSciNet  Article  Google Scholar 

  21. Kubínová, M., Pultarová, I.: Block preconditioning of stochastic Galerkin problems: new two-sided guaranteed spectral bounds. SIAM/ASA J. Uncertain. Quantif. 8(1), 88–113 (2020)

    MathSciNet  Article  Google Scholar 

  22. Kouhia, R.: Description of the CYLSHELL set. Technical Report, Laboratory of Structural Mechanics, Finland. Matrix Market (1998)

Download references


The work of J. Papež and P. Tichý was supported by the Grant Agency of the Czech Republic under grant no. 20-01074S.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Petr Tichý.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Algorithm 2 (MATLAB code, preconditioned version)

figure f

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meurant, G., Papež, J. & Tichý, P. Accurate error estimation in CG. Numer Algor 88, 1337–1359 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Conjugate gradients
  • Error estimation
  • Accuracy of the estimate

Mathematics Subject Classification (2010)

  • 15A06
  • 65F10