Skip to main content
Log in

Solving decomposable sparse systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Améndola et al. proposed a method for solving systems of polynomial equations lying in a family which exploits a recursive decomposition into smaller systems. A family of systems admits such a decomposition if and only if the corresponding Galois group is imprimitive. When the Galois group is imprimitive, we consider the problem of computing an explicit decomposition. A consequence of Esterov’s classification of sparse polynomial systems with imprimitive Galois groups is that this decomposition is obtained by inspection. This leads to a recursive algorithm to compute complex isolated solutions to decomposable sparse systems, which we present and give evidence for its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Améndola, C., Rodriguez, J.I.: Solving parameterized polynomial systems with decomposable projections. arXiv:1612.08807 (2016)

  2. Bates, D. J., Hauenstein, J. D., Sommese, A. J.: A parallel endgame. In: Randomization, relaxation, and complexity in polynomial equation solving. Contemp. Math., vol. 556, pp 25–35. Amer. Math. Soc., Providence (2011)

  3. Bernstein, D. N.: The number of roots of a system of equations. Funkcional Anal. i Priložen 9(3), 1–4 (1975)

    MathSciNet  Google Scholar 

  4. Brysiewicz, T., Rodriguez, J.I., Sottile, F., Yahl, T.: Software for decomposable sparse polynomial systems, https://www.math.tamu.edu/~thomasjyahl/research/DSS/DSSsite.html (2020)

  5. Chen, T.: Unmixing the mixed volume computation. Discrete Comput. Geom. 62, 55–86 (2019)

    Article  MathSciNet  Google Scholar 

  6. Derksen, H., Kemper, G.: Computational Invariant Theory. Invariant Theory and Algebraic Transformation Groups, I. Springer, Berlin (2002). Encyclopaedia of Mathematical Sciences, 130

    MATH  Google Scholar 

  7. Duff, T., Hill, C., Jensen, A., Lee, K., Leykin, A., Sommars, J.: Solving polynomial systems via homotopy continuation and monodromy. IMA J. Numer. Anal. 39(3), 1421–1446 (2019)

    Article  MathSciNet  Google Scholar 

  8. Esterov, A.: Galois theory for general systems of polynomial equations. Compos. Math. 155(2), 229–245 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ewald, G.: Combinatorial convexity and algebraic geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)

    Book  Google Scholar 

  10. Garcia, C. B., Zangwill, W. I.: Finding all solutions to polynomial systems and other systems of equations. Math. Program. 16(1), 159–176 (1979)

    Article  MathSciNet  Google Scholar 

  11. Gross, E., Petrović, S., Verschelde, J.: Interfacing with PHCpack. J. Softw. Algebra Geom. 5, 20–25 (2013)

    Article  MathSciNet  Google Scholar 

  12. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46(4), 685–724 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Hauenstein, J. D., Sottile, F.: Algorithm 921: alphacertified: certifying solutions to polynomial systems. ACM Transactions on Mathematical Software (TOMS) 38(4), 28 (2012)

    Article  MathSciNet  Google Scholar 

  14. Hermite, C.: Sur les fonctions algébriques. CR Acad. Sci.(Paris) 32, 458–461 (1851)

    Google Scholar 

  15. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)

    Article  MathSciNet  Google Scholar 

  16. Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation. Numer. Algorithms 18(1), 91–108 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kušnirenko, A. G.: Newton polyhedra and Bezout’s theorem. Funkcional. Anal. i Priložen 10(3), 82–83 (1976)

    MathSciNet  Google Scholar 

  18. Li, T. Y., Sauer, T., Yorke, J. A.: The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5), 1241–1251 (1989)

    Article  MathSciNet  Google Scholar 

  19. Martín del Campo-Sanchez, A., Sottile, F., Williams, R.: Classification of Schubert Galois groups in Gr(4, 9), arXiv:1902.06809 (2019)

  20. Morgan, A. P.: Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. Prentice Hall Inc., Englewood Cliffs (1987)

    MATH  Google Scholar 

  21. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). part II

    MathSciNet  MATH  Google Scholar 

  22. Munkres, J. R.: Topology: a First Course. Prentice-Hall Inc., Englewood Cliffs (1975)

    MATH  Google Scholar 

  23. Pirola, G. P., Schlesinger, E.: Monodromy of projective curves. J. Algebraic Geom. 14(4), 623–642 (2005)

    Article  MathSciNet  Google Scholar 

  24. Smale, S.: Newton’s Method Estimates from Data at One Point. The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pp 185–196. Springer, New York (1986)

    Book  Google Scholar 

  25. Sommese, A. J., Wampler II, C. W.: The Numerical Solution of Systems of Polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)

    Book  Google Scholar 

  26. Sottile, F., Williams, R., Ying, L.: Galois groups of compositions of Schubert problems. arXiv:1910.06843 (2019)

  27. Steffens, R., Theobald, T.: Mixed volume techniques for embeddings of Laman graphs. Comput. Geom. 43(2), 84–93 (2010)

    Article  MathSciNet  Google Scholar 

  28. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999). Available at http://www.math.uic.edu/~jan

    Article  Google Scholar 

  29. Wielandt, H.: Finite Permutation Groups. Translated from the German by R. Bercov. Academic Press, New York-London (1964)

    Google Scholar 

Download references

Funding

Research of Sottile supported by grant 636314 from the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor Brysiewicz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brysiewicz, T., Rodriguez, J.I., Sottile, F. et al. Solving decomposable sparse systems. Numer Algor 88, 453–474 (2021). https://doi.org/10.1007/s11075-020-01045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01045-x

Keywords

Mathematics Subject Classification (2010)

Navigation