Skip to main content
Log in

Galerkin finite element method for nonlinear fractional differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study the existence, regularity, and approximation of the solution for a class of nonlinear fractional differential equations. In order to do this, suitable variational formulations are defined for nonlinear boundary value problems with Riemann-Liouville and Caputo fractional derivatives together with the homogeneous Dirichlet condition. We investigate the well-posedness and also the regularity of the corresponding weak solutions. Then, we develop a Galerkin finite element approach for the numerical approximation of the weak formulations and drive a priori error estimates and prove the stability of the schemes. Finally, some numerical experiments are provided to demonstrate the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdulle, A., Vilmart, G.: A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems. Numer. Math. 121(3), 397–431 (2012)

    Article  MathSciNet  Google Scholar 

  2. Adams, R.A., Fournier, J.J.: Sobolev Spaces, vol. 140. Elsevier, Amsterdam (2003)

    Google Scholar 

  3. Antil, H., Pfefferer, J., Warma, M.: A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: Mathematical Modelling and Numerical Analysis 51(6), 2049–2067 (2017)

    Article  MathSciNet  Google Scholar 

  4. Askhabov, S.: Nonlinear singular integral equations in Lebesgue spaces. J. Math. Sci. 173(2), 155–171 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, vol. 9. Walter de Gruyter, Berlin (2008)

    MATH  Google Scholar 

  6. Biegert, M., Warma, M., et al.: Some quasi-linear elliptic equations with inhomogeneous generalized Robin boundary conditions on “bad” domains. Advances in Differential Equations 15(9/10), 893–924 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Brunner, H.: Volterra Integral Equations: an Introduction to Theory and Applications, vol. 30. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  8. Carstensen, C., Praetorius, D.: Averaging techniques for the effective numerical solution of Symm’s integral equation of the first kind. SIAM J. Sci. Comput. 27(4), 1226–1260 (2006)

    Article  MathSciNet  Google Scholar 

  9. Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  10. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  11. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Mathematics (2010)

  12. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (4), 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  13. Eggermont, P.P.B.: On Galerkin methods for Abel-type integral equations. SIAM Journal on Numerical Analysis 25(5), 1093–1117 (1988). ISSN 0036-1429

    Article  MathSciNet  Google Scholar 

  14. Ervin, V., Heuer, N., Roop, J.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87(313), 2273–2294 (2018)

    Article  MathSciNet  Google Scholar 

  15. Feistauer, M., Z~enís~ek, A.: Finite element solution of nonlinear elliptic problems. Numerische Mathematik 50(4), 451–475 (1986). ISSN 0945-3245

    Article  MathSciNet  Google Scholar 

  16. Feistauer, M., Krızek, M., Sobotıková, V.: An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type. East-West Journal of Numerical Mathematics 1(4), 267–285 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Hlavacek, I., Krizek, M., Maly, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. Journal of Mathematical Analysis and Applications 184(1), 168–189 (1994). ISSN 0022-247X

    Article  MathSciNet  Google Scholar 

  18. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kato, T.: Demicontinuity, hemicontinuity and monotonicity. Bull. Am. Math. Soc. 70(4), 548–550 (1964)

    Article  MathSciNet  Google Scholar 

  20. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Limited, Amsterdam (2006)

    Google Scholar 

  21. Kopteva, N., Stynes, M.: Analysis and numerical solution of a riemann-Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 43(1), 77–99 (2017)

    Article  MathSciNet  Google Scholar 

  22. Krasnoseĺskiĭ, M.A., Vaĭnikko, G.M., Zabreĭko, P.P., Rutitskii, Y.B., Stetsenko, V.Y.: Approximate Solution of Operator Equations. Wolters-Noordhoff Publishing, Groningen (1972). Translated from the Russian by D. Louvish

    Book  Google Scholar 

  23. Kufner, A., John, O., Fucik, S.: Function Spaces, vol. 3. Springer, Berlin (1977)

    MATH  Google Scholar 

  24. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, London (2015)

    Book  Google Scholar 

  25. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016). ISSN 0021-9991

    Article  MathSciNet  Google Scholar 

  26. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numerical Algorithms 74(2), 499–525 (2017). ISSN 1572-9265

    Article  MathSciNet  Google Scholar 

  27. Liang, H., Stynes, M.: Collocation methods for general Caputo two-point boundary value problems. J. Sci. Comput. 76(1), 390–425 (2018). ISSN 1573-7691

    Article  MathSciNet  Google Scholar 

  28. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

  29. Mendez, O., Lang, J.: Analysis on Function Spaces of Musielak-Orlicz Type. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  30. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, vol. 198. Elsevier, Amsterdam (1998)

    Google Scholar 

  31. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. M. Dekker, New York (1991)

    MATH  Google Scholar 

  32. Vögeli, U., Nedaiasl, K., Sauter, S.A.: A fully discrete Galerkin method for Abel-type integral equations. Adv. Comput. Math. 44(5), 1601–1626 (2018). ISSN 1572-9044

    Article  MathSciNet  Google Scholar 

  33. Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)

    Article  MathSciNet  Google Scholar 

  34. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  35. Yang, Y.: Jacobi spectral Galerkin methods for fractional integro-differential equations. Calcolo 52(4), 519–542 (2015). ISSN 1126-5434

    Article  MathSciNet  Google Scholar 

  36. Yarmohammadi, M., Javadi, S., Babolian. E.: Spectral iterative method and convergence analysis for solving nonlinear fractional differential equation. J. Comput. Phys. 359, 436–450 (2018). ISSN 0021-9991

    Article  MathSciNet  Google Scholar 

  37. Zaky, M.A., Ameen, I.G.: A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions. Numerical Algorithms. ISSN 1572-9265 (2019)

  38. Zhang, S.: The existence of a positive solution for a nonlinear fractional differential equation. Journal of Mathematical Analysis and Applications 252(2), 804–812 (2000). ISSN 0022-247X

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to the editor, Claude Brezinski and anonymous referees for providing helpful comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadijeh Nedaiasl.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedaiasl, K., Dehbozorgi, R. Galerkin finite element method for nonlinear fractional differential equations. Numer Algor 88, 113–141 (2021). https://doi.org/10.1007/s11075-020-01032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01032-2

Keywords

Mathematics Subject Classification (2010)

Navigation