Abstract
In this paper, we discuss the development of a sublinear sparse Fourier algorithm for high-dimensional data. In 11Adaptive Sublinear Time Fourier Algorithm” by Lawlor et al. (Adv. Adapt. Data Anal. 5(01):1350003, 2013), an efficient algorithm with \({\Theta }(k\log k)\) average-case runtime and Θ(k) average-case sampling complexity for the one-dimensional sparse FFT was developed for signals of bandwidth N, where k is the number of significant modes such that k ≪ N. In this work we develop an efficient algorithm for sparse FFT for higher dimensional signals, extending some of the ideas in Lawlor et al. (Adv. Adapt. Data Anal. 5(01):1350003, 2013). Note a higher dimensional signal can always be unwrapped into a one-dimensional signal, but when the dimension gets large, unwrapping a higher dimensional signal into a one-dimensional array is far too expensive to be realistic. Our approach here introduces two new concepts: “partial unwrapping” and “tilting.” These two ideas allow us to efficiently compute the sparse FFT of higher dimensional signals.
Similar content being viewed by others
References
Bittens, S., Zhang, R., Iwen, M.A.: A deterministic sparse FFT for functions with structured Fourier sparsity. Adv. Comput. Math. 45(2), 519–561 (2019)
Choi, B., Christlieb, A., Wang, Y.: Multiscale high-dimensional sparse Fourier algorithms for noisy data. arXiv:1907.03692 (2019)
Choi, B., Iwen, M., Krahmer, F.: Sparse harmonic transforms: a new class of sublinear-time algorithms for learning functions of many variables (2018)
Christlieb, A., Lawlor, D., Wang, Y.: A multiscale sub-linear time Fourier algorithm for noisy data. Appl. Comput. Harmon. Anal. 40(3), 553–574 (2016)
Ghazi, B., Hassanieh, H., Indyk, P., Katabi, D., Price, E., Shi, L.: Sample-Optimal Average-Case Sparse Fourier Transform in Two Dimensions. In: 2013 51St Annual Allerton Conference On Communication, Control, and Computing (Allerton), pp. 1258–1265. IEEE (2013)
Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Near-optimal sparse Fourier representations via sampling. In: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 152–161. ACM (2002)
Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved Time Bounds for Near-Optimal Sparse Fourier Representations. In: Optics & Photonics 2005, pp. 59141A–59141A. International Society for Optics and Photonics (2005)
Greene, C.S., Krishnan, A., Wong, A.K., Ricciotti, E., Zelaya, R.A., Himmelstein, D.S., Zhang, R., Hartmann, B.M., Zaslavsky, E., Sealfon, S.C., et al.: Understanding multicellular function and disease with human tissue-specific networks. Nat. Gen. 47(6), 569–576 (2015)
Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier transform. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing, pp. 563–578. ACM (2012)
Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pp. 1183–1194. Society for Industrial and Applied Mathematics (2012)
Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10(3), 303–338 (2010)
Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34(1), 57–82 (2013)
Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015). https://doi.org/10.1016/j.jco.2015.02.004. http://www.sciencedirect.com/science/article/pii/S0885064X15000217
Kämmerer, L., Potts, D., Volkmer, T.: High-dimensional sparse fft based on sampling along multiple rank-1 lattices. arXiv:1711.05152 (2017)
Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(01), 1350003 (2013)
LSST: large synoptic survey telescope. http://www.lsst.org/
Merhi, S., Zhang, R., Iwen, M.A., Christlieb, A.: A new class of fully discrete sparse Fourier transforms: faster stable implementations with guarantees. J. Fourier Anal. Appl. 25(3), 751–784 (2019)
Plonka, G., Wannenwetsch, K.: A deterministic sparse FFT algorithm for vectors with small support. Numer. Algorithm. 71(4), 889–905 (2016). https://doi.org/10.1007/s11075-015-0028-0
Plonka, G., Wannenwetsch, K., Cuyt, A., Lee, W.S.: Deterministic sparse FFT for m-sparse vectors. Numer. Algorithm. 78(1), 133–159 (2018). https://doi.org/10.1007/s11075-017-0370-5
Plonka, G., Wischerhoff, M.: How many Fourier samples are needed for real function reconstruction? J. Appl. Math. Comput. 42(1), 117–137 (2013). https://doi.org/10.1007/s12190-012-0624-2
Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204–224 (2013)
Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, 1 (2016). https://doi.org/10.3389/fams.2016.00001
Potts, D., Volkmer, T.: Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harmon. Anal. 41(3), 713–748 (2016)
Acknowledgments
We would like to thank Mark Iwen for his valuable advice.
Funding
This research is supported in part by AFOSR grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, NSF grant DMS-1115709, and MSU Foundation grant SPG-RG100059, as well as Hong Kong Research Grant Council grants 16306415, 16308518 and 16317416.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Choi, B., Christlieb, A. & Wang, Y. High-dimensional sparse Fourier algorithms. Numer Algor 87, 161–186 (2021). https://doi.org/10.1007/s11075-020-00962-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00962-1