Skip to main content
Log in

High-dimensional sparse Fourier algorithms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we discuss the development of a sublinear sparse Fourier algorithm for high-dimensional data. In 11Adaptive Sublinear Time Fourier Algorithm” by Lawlor et al. (Adv. Adapt. Data Anal. 5(01):1350003, 2013), an efficient algorithm with \({\Theta }(k\log k)\) average-case runtime and Θ(k) average-case sampling complexity for the one-dimensional sparse FFT was developed for signals of bandwidth N, where k is the number of significant modes such that kN. In this work we develop an efficient algorithm for sparse FFT for higher dimensional signals, extending some of the ideas in Lawlor et al. (Adv. Adapt. Data Anal. 5(01):1350003, 2013). Note a higher dimensional signal can always be unwrapped into a one-dimensional signal, but when the dimension gets large, unwrapping a higher dimensional signal into a one-dimensional array is far too expensive to be realistic. Our approach here introduces two new concepts: “partial unwrapping” and “tilting.” These two ideas allow us to efficiently compute the sparse FFT of higher dimensional signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bittens, S., Zhang, R., Iwen, M.A.: A deterministic sparse FFT for functions with structured Fourier sparsity. Adv. Comput. Math. 45(2), 519–561 (2019)

    Article  MathSciNet  Google Scholar 

  2. Choi, B., Christlieb, A., Wang, Y.: Multiscale high-dimensional sparse Fourier algorithms for noisy data. arXiv:1907.03692 (2019)

  3. Choi, B., Iwen, M., Krahmer, F.: Sparse harmonic transforms: a new class of sublinear-time algorithms for learning functions of many variables (2018)

  4. Christlieb, A., Lawlor, D., Wang, Y.: A multiscale sub-linear time Fourier algorithm for noisy data. Appl. Comput. Harmon. Anal. 40(3), 553–574 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ghazi, B., Hassanieh, H., Indyk, P., Katabi, D., Price, E., Shi, L.: Sample-Optimal Average-Case Sparse Fourier Transform in Two Dimensions. In: 2013 51St Annual Allerton Conference On Communication, Control, and Computing (Allerton), pp. 1258–1265. IEEE (2013)

  6. Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Near-optimal sparse Fourier representations via sampling. In: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 152–161. ACM (2002)

  7. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved Time Bounds for Near-Optimal Sparse Fourier Representations. In: Optics & Photonics 2005, pp. 59141A–59141A. International Society for Optics and Photonics (2005)

  8. Greene, C.S., Krishnan, A., Wong, A.K., Ricciotti, E., Zelaya, R.A., Himmelstein, D.S., Zhang, R., Hartmann, B.M., Zaslavsky, E., Sealfon, S.C., et al.: Understanding multicellular function and disease with human tissue-specific networks. Nat. Gen. 47(6), 569–576 (2015)

    Article  Google Scholar 

  9. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier transform. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing, pp. 563–578. ACM (2012)

  10. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pp. 1183–1194. Society for Industrial and Applied Mathematics (2012)

  11. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10(3), 303–338 (2010)

    Article  MathSciNet  Google Scholar 

  12. Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34(1), 57–82 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015). https://doi.org/10.1016/j.jco.2015.02.004. http://www.sciencedirect.com/science/article/pii/S0885064X15000217

    Article  MathSciNet  Google Scholar 

  14. Kämmerer, L., Potts, D., Volkmer, T.: High-dimensional sparse fft based on sampling along multiple rank-1 lattices. arXiv:1711.05152 (2017)

  15. Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(01), 1350003 (2013)

    Article  MathSciNet  Google Scholar 

  16. LSST: large synoptic survey telescope. http://www.lsst.org/

  17. Merhi, S., Zhang, R., Iwen, M.A., Christlieb, A.: A new class of fully discrete sparse Fourier transforms: faster stable implementations with guarantees. J. Fourier Anal. Appl. 25(3), 751–784 (2019)

    Article  MathSciNet  Google Scholar 

  18. Plonka, G., Wannenwetsch, K.: A deterministic sparse FFT algorithm for vectors with small support. Numer. Algorithm. 71(4), 889–905 (2016). https://doi.org/10.1007/s11075-015-0028-0

    Article  MathSciNet  Google Scholar 

  19. Plonka, G., Wannenwetsch, K., Cuyt, A., Lee, W.S.: Deterministic sparse FFT for m-sparse vectors. Numer. Algorithm. 78(1), 133–159 (2018). https://doi.org/10.1007/s11075-017-0370-5

    Article  MathSciNet  Google Scholar 

  20. Plonka, G., Wischerhoff, M.: How many Fourier samples are needed for real function reconstruction? J. Appl. Math. Comput. 42(1), 117–137 (2013). https://doi.org/10.1007/s12190-012-0624-2

    Article  MathSciNet  Google Scholar 

  21. Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204–224 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, 1 (2016). https://doi.org/10.3389/fams.2016.00001

    Article  Google Scholar 

  23. Potts, D., Volkmer, T.: Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harmon. Anal. 41(3), 713–748 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Mark Iwen for his valuable advice.

Funding

This research is supported in part by AFOSR grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, NSF grant DMS-1115709, and MSU Foundation grant SPG-RG100059, as well as Hong Kong Research Grant Council grants 16306415, 16308518 and 16317416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bosu Choi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, B., Christlieb, A. & Wang, Y. High-dimensional sparse Fourier algorithms. Numer Algor 87, 161–186 (2021). https://doi.org/10.1007/s11075-020-00962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00962-1

Keywords

Mathematics Subject Classification (2010)

Navigation