Flattened aggregate function method for nonlinear programming with many complicated constraints


In this paper, efforts are made to solve nonlinear programming with many complicated constraints more efficiently. The constrained optimization problem is firstly converted to a minimax problem, where the max-value function is approximately smoothed by the so-called flattened aggregate function or its modified version. For carefully updated aggregate parameters, the smooth unconstrained optimization problem is solved by an inexact Newton method. Because the flattened aggregate function can usually reduce greatly the amount of computation for gradients and Hessians, the method is more efficient. Convergence of the proposed method is proven and some numerical results are given to show its efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Bagirov, A.M., Al Nuaimat, A., Sultanova, N.: Hyperbolic smoothing function method for minimax problems. Optimization 62, 759–782 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bandler, J.W., Charalambous, C.: Nonlinear programming using minimax techniques. J. Optim. Theory Appl. 13, 607–619 (1974)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bertsekas, D.P.: Approximation procedures based on the method of multipliers. J. Optim. Theory Appl. 23, 487–510 (1977)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  5. 5.

    Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Dembo, R.S., Steihaug, T.: Truncated-newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44, 525–597 (2003)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gigola, C., Gomez, S.: A regularization method for solving the finite convex min-max problem. SIAM J. Numer. Anal. 27, 1621–1634 (1990)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gould, N., Orban, D., Toint, P.: Numerical methods for large-scale nonlinear optimization. Acta Numer. 14, 299–361 (2005)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Han, S.P., Mangasarian, O.L.: Exact penalty functions in nonlinear programming. Math. Program. 17, 251–269 (1979)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Herskovits, J.: A two-stage feasible directions algorithm for nonlinear constrained optimization. Math. Program. 36, 19–38 (1986)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Jian, J.B.: Fast Algorithm for Smoothing Constrained Optimization: Theoretical Analysis and Numerical Experiments. Science Press, Beijing (2010)

    Google Scholar 

  13. 13.

    Kort, B.W., Bertsakas, D.P.: A new penalty function algorithm algorithm for constrained minimization. In: Proceedings of the 1972 IEEE Conference on Decision and Control, New Orleans (1972)

  14. 14.

    Li, D.H., Qi, L.Q., Tam, J., Wu, S.Y.: A smoothing Newton method for semi-infinite programming. J. Global Optim 30, 169–194 (2004)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Li, J.X., Huo, J.Z.: Inexact smoothing method for large scale minimax optimization. Appl. Math. Comput. 218, 2750–2760 (2011)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Li, X.S.: An aggregate function method for nonlinear programming. Sci. China (A) 34, 1467–1473 (1991)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Li, X.S., Fang, S.C.: On the entropic regularization method for solving min-max problems with applications. Math. Methods Oper. Res. 46, 119–130 (1997)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Mayne, D.Q., Polak, E.: Feasible direction algorithm for optimization problems with equality and inequality constraints. Math. Program. 11, 67–80 (1976)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  20. 20.

    Pee, E.Y., Royset, J.O.: On solving large-scale finite minimax problems using exponential smoothing. J. Optim. Theory Appl. 148, 390–421 (2011)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Peng, J.M., Lin, Z.: A non-interior continuation method for generalized linear complementarity problems. Math. Program. 86, 533–563 (1999)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119, 459–484 (2003)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Polak, E., Womersley, R.S., Yin, H.X.: An algorithm based on active sets and smoothing for discretized semi-infinite minimax problems. J. Optim. Theory Appl. 138, 311–328 (2008)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Rustem, B.: Equality and inequality constrained optimization algorithms with convergent stepsizes. J. Optim. Theory Appl. 76, 429–453 (1993)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Tang, H.W., Zhang, L.W.: A maximum entropy method for convex programming. Chin. Sci. Bull. 40, 361–364 (1995)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Wang, Y.C., Tang, H.W.: Investigation of maximum entropy method for min-max problems (I). J. Dalian Univ. Technol. 37, 495–499 (1997)

    MATH  Google Scholar 

  27. 27.

    Wang, Y.C., Tang, H.W.: Investigation of maximum entropy method for min-max problems (II). J. Dalian Univ. Technol. 38, 1–5 (1998)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Xiao, Y., Yu, B.: A truncated aggregate smoothing newton method for minimax problems. Appl. Math. Comput. 216, 1868–1879 (2010)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20, 267–279 (2001)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Yu, B., Feng, G.C., Zhang, S.L.: The aggregate constraint homotopy method for nonconvex nonlinear programming. Nonlinear Anal. 45, 839–847 (2001)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Yuan, Y.X., Sun, W.Y.: Optimization Theory and Methods. Science Press, Beijing (1999)

    Google Scholar 

  32. 32.

    Zang, I.: A smoothing technique for min-max optimization. Math. Program. 19, 61–77 (1980)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zhang, L.L., Zhang, P.A., Li, X.S.: Some notes on the entropic method. Oper. Res. Manag. Sci. 18, 74–77 (2009)

    Google Scholar 

  34. 34.

    Zhao, G., Wang, Z., Mou, H.: Uniform approximation of min/max functions by smooth splines. J. Comput. Appl. Math. 236, 699–703 (2011)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Zhou, Z.Y.: Smoothing homotopy methods for solving several mathematieal programming problems. Dalian University of Technology, Ph.D, diss. (2011)

    Google Scholar 

  36. 36.

    Zhou, Z.Y., Yu, B.: The flattened aggregate constraint homotopy method for nonlinear programming problems with many nonlinear constraints. Abstr. Appl. Anal. 4, 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    MathSciNet  Article  Google Scholar 

Download references


This work is financially supported by the Innovation Talent Training Program of Science and Technology of Jilin Province of China (20180519011JH), the Science and Technology Development Project Program of Jilin Province (20190303132SF), and the Project of Education Department of Jilin Province (JJKH20200028KJ).

Author information



Corresponding author

Correspondence to Yueting Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Yang, Y., Lu, Y. et al. Flattened aggregate function method for nonlinear programming with many complicated constraints. Numer Algor 86, 103–122 (2021). https://doi.org/10.1007/s11075-020-00881-1

Download citation


  • Nonlinear programming
  • Complicated constraints
  • Minimax problem
  • Flattened aggregate function
  • Inexact Newton method

Mathematics Subject Classification (2010)

  • 90C30
  • 65K05