Skip to main content
Log in

A fast method for variable-order space-fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We develop a fast divide-and-conquer indirect collocation method for the homogeneous Dirichlet boundary value problem of variable-order space-fractional diffusion equations. Due to the impact of the space-dependent variable order, the resulting stiffness matrix of the numerical scheme does not have a Toeplitz structure. In this paper, we derive a fast approximation of the coefficient matrix by the means of a finite sum of Toeplitz matrices multiplied by diagonal matrices. We show that the approximation is asymptotically consistent with the original problem, which requires \(O(N\log ^{2} N)\) memory and \(O(N\log ^{3} N)\) computational complexity with N being the numbers of unknowns. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Algebra Appl. 24, e2093 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bear, J.: Some experiments on dispersion. J. Geophys. Res. 66, 2455–2467 (1961)

    Article  MathSciNet  Google Scholar 

  3. Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)

    MATH  Google Scholar 

  4. Benson, D., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport in Porous Media 42, 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bertaccini, D., Durastante, F.: Limited memory block preconditioners for fast solution of fractional partial differential equations. J. Sci. Comput. 77, 950–970 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)

    Article  MathSciNet  Google Scholar 

  8. Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)

    Article  Google Scholar 

  9. Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous diffusion. Boletí,n de la Sociedad Matemática Mexicana 20, 87–105 (2014)

    Article  MathSciNet  Google Scholar 

  10. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  11. Embrechts, P., Maejima, M.: Selfsimilar processes, Princeton series in applied mathematics. University Press, Princeton (2002)

    MATH  Google Scholar 

  12. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. PDEs 22, 558–576 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fu, H., Ng, M.K., Wang, H.: A divided-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73(6), 1233–1242 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincare 19, 3855–3881 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.4367 (2017)

  20. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numer Math. (2018)

  22. Lin, X., Ng, M.K., Sun, H.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAMX 38, 1580–1614 (2017)

    Article  MathSciNet  Google Scholar 

  23. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  Google Scholar 

  24. Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics (2011)

  25. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)

    Article  MathSciNet  Google Scholar 

  26. Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algorithms 74, 153–173 (2017)

    Article  MathSciNet  Google Scholar 

  27. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  28. Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)

    Article  MathSciNet  Google Scholar 

  29. Schumer, R., Benson, D.A, Meerschaert, M.M., Wheatcraft, S. W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrology 48, 69–88 (2001)

    Article  Google Scholar 

  30. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    Article  MathSciNet  Google Scholar 

  31. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A: Stat. Mech. Appl. 388, 4586–4592 (2009)

    Article  Google Scholar 

  32. Varah J.: A lower bound for the smallest singular value of a matrix[J]. Linear Algebra Appl 11(1), 3–5 (1975)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)

    Article  MathSciNet  Google Scholar 

  34. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  Google Scholar 

  35. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37, A2710–A2732 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhao, Z., Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM Numer. Anal. 58, 330–352 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)

    Article  MathSciNet  Google Scholar 

  40. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Funding

This work was funded by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under grant DMS-1620194, by the National Natural Science Foundation of China (No. 11971482), by the Natural Science Foundation of Shandong Province (No. ZR2017MA006, No. ZR2019BA026), and by the China Scholarship Council (File No. 2018063-20326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Zheng, X., Fu, H. et al. A fast method for variable-order space-fractional diffusion equations. Numer Algor 85, 1519–1540 (2020). https://doi.org/10.1007/s11075-020-00875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00875-z

Keywords

Mathematics Subject Classification (2010)

Navigation