An efficient and uniformly convergent scheme for one-dimensional parabolic singularly perturbed semilinear systems of reaction-diffusion type


In this work we are interested in the numerical approximation of the solutions to 1D semilinear parabolic singularly perturbed systems of reaction-diffusion type, in the general case where the diffusion parameters for each equation can have different orders of magnitude. The numerical method combines the classical central finite differences scheme to discretize in space and a linearized fractional implicit Euler method together with a splitting by components technique to integrate in time. In this way, only tridiagonal linear systems must be solved to compute the numerical solution; consequently, the computational cost of the algorithm is considerably less than that of classical schemes. If the spatial discretization is defined on appropriate nonuniform meshes, the method is uniformly convergent of first order in time and almost second order in space. Numerical results for some test problems are presented which corroborate in practice the uniform convergence and the efficiency of the algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Boglaev, I.: Uniformly convergent monotone iterates for nonlinear parabolic reaction-diffusion systems. Lecture Notes in Computational Science and Engineering 120, 35–48 (2017)

    Article  Google Scholar 

  2. 2.

    Chadha, N.M., Kopteva, N.: A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31, 188–211 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chadha, N.M., Kopteva, N.: Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem. Adv. Comput. Math. 35, 33–55 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Clavero, C., Gracia, J.L.: Uniformly convergent additive finite difference schemes for singularly perturbed parabolic reaction-diffusion system. Comput. Math. Appl. 67, 655–670 (2014)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Clavero, C., Gracia, J.L.: Uniformly convergent additive schemes for 2D singularly perturbed parabolic systems of reaction-diffusion type. Numer. Algorithms 80, 1097–1120 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Clavero, C., Gracia, J.L., Lisbona, F.: Second order uniform approximations for the solution of time dependent singularly perturbed reaction-diffusion systems. Int. J. Numer. Anal. Mod. 7, 428–443 (2010)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Clavero, C., Jorge, J.C.: Solving efficiently one dimensional parabolic singularly perturbed reaction-diffusion systems: a splitting by components. J. Comp. Appl. Math. 344, 1–14 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comp. 249, 265–277 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers, Applied Mathematics, vol. 16 Chapman and Hall/CRC (2000)

  10. 10.

    Franklin, V., Paramasivam, M., Miller, J.J.H., Valarmathi, S.: Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear parabolic system. Int. J. Numer. Anal. Model. 10, 178–202 (2013)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Gracia, J.L., Lisbona, F.: A uniformly convergent scheme for a system of reaction–diffusion equations. J. Comp. Appl. Math. 206, 1–16 (2007)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gracia, J.L., Lisbona, F., O’Riordan, E.: A coupled system of singularly perturbed parabolic reaction-diffusion equations. Adv. Comput. Math. 32, 43–61 (2010)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kopteva, N., Savescu, S.B.: Pointwise error estimates for a singularly perturbed time-dependent semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31, 616–639 (2011)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kopteva, N., Stynes, M.: Stabilised approximation of interior-layer solutions of a singularly perturbed semilinear reaction-diffusion problem. Numer. Math. 119, 787–810 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and Quasilinear Equations of Parabolic Type Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, R.I (1967)

  16. 16.

    Linss, T., Madden, N.: Accurate solution of a system of coupled singularly perturbed reaction-diffusion equations. Computing 73, 121–133 (2004)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  18. 18.

    Shishkin, G.I., Shishkina, L.P.: Approximation of a system of singularly perturbed parabolic reaction-diffusion equations in a rectangle, Zh. Vychisl. Mat. Mat. Fiz. 48, 660–673 (2008) (in Russian); translation in Comput. Math. Math. Phys. 48, 627–640 (2008)

  19. 19.

    Shishkina, L.P., Shishkin, G.I.: Robust numerical method for a system of singularly perturbed parabolic reaction-diffusion equations on a rectangle. Math. Model. Anal. 13, 251–261 (2008)

    MathSciNet  Article  Google Scholar 

Download references


This research was partially supported by the projects MTM2014-52859-P and MTM2017-83490-P and the Aragón Government and European Social Fund (group E24-17R).

Author information



Corresponding author

Correspondence to C. Clavero.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clavero, C., Jorge, J.C. An efficient and uniformly convergent scheme for one-dimensional parabolic singularly perturbed semilinear systems of reaction-diffusion type. Numer Algor 85, 1005–1027 (2020).

Download citation


  • Semilinear parabolic systems
  • Linearly implicit methods
  • Splitting by components
  • Nonuniform meshes
  • Uniform convergence

Mathematics Subject Classification (2010)

  • 65N06
  • 65N12
  • 65M06