Skip to main content
Log in

Isogeometric analysis for time-fractional partial differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider isogeometric analysis to solve the time-fractional partial differential equations: fractional diffusion and diffusion-wave equations. Traditional spatial discretization for time-fractional models include finite differences, finte elements, spectral methods, etc. A novel method-isogeometric analysis is used for spatial discretization in this paper. The traditional L1 scheme and L2 scheme are used for time discretization of our models. Isogeometric analysis has potential advantages in exact geometry representations, efficient mesh generation, h- and k- refinements, and smooth basis functions. We show stability and a priori error estimates for spatial discretization and the space-time fully discrete scheme. A variety of numerical examples in 2d and 3d are provided to verify theory and show accuracy, efficiency, and convergence of isogeometric analysis based on B-splines and non-uniform rational B-splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Bazilevs, Y., Beirão de Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)

    Article  MathSciNet  Google Scholar 

  2. Beirão de Veiga, L., Buffa, A., Sangalli, G., Vazquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    Article  MathSciNet  Google Scholar 

  3. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley (2009)

  5. Dai, P., Wu, Q., Zhu, S.: Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations. Numer. Methods Partial Diff. Equ. 35, 699–715 (2019)

    Article  MathSciNet  Google Scholar 

  6. Deng, W.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MathSciNet  Google Scholar 

  7. de Falco, C., Reali, A., Vàzquez, R.: GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv. Eng. Softw. 42, 1020–1034 (2011)

    Article  Google Scholar 

  8. Feng, L.B., Liu, P., Zhuang, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52–65 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation. Numer. Algor. 72, 749–767 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dynam. 29, 129–143 (2002)

    Article  MathSciNet  Google Scholar 

  11. Hughes, T.J.R., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  13. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  Google Scholar 

  16. Li, R., Wu, Q., Zhu, S.: Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems. J. Comput. Phys. 387, 280–302 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46, 488–504 (2005)

    Article  MathSciNet  Google Scholar 

  18. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  19. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models. Imperial College Press, London (2010)

    Book  Google Scholar 

  20. Mustapha, K., Abdallah, B., Furati, K.M.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52, 2512–2529 (2014)

    Article  MathSciNet  Google Scholar 

  21. Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (1997)

    Book  Google Scholar 

  22. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  23. Quarteroni, A., Valli, A.: Numerical approximation of partial differential problems. Springer-Verlag, Berlin (1997)

    MATH  Google Scholar 

  24. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  26. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (1997)

    Book  Google Scholar 

  27. Wang, H., Cheng, A., Wang, K.: Fast finite volume methods for space-fractional diffusion equations. Discrete Contin. Dyn. Syst. Ser. B 20, 1427–1441 (2015)

    Article  MathSciNet  Google Scholar 

  28. Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52, 1292–1310 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, H., Yang, D., Zhu, S.: A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Engrg. 290, 45–56 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, H., Yang, D., Zhu, S.: Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J. Sci. Comput. 70, 429–449 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zayernouri, M., Karniadakis, G.E.: Discontinuous spectral element methods for time-and space-fractional advection equations. SIAM J. Sci. Comput. 36, B684–B707 (2014)

    Article  MathSciNet  Google Scholar 

  34. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  Google Scholar 

  35. Zhu, S., Dedè, L., Quarteroni, A.: Isogeometric analysis and proper orthogonal decomposition for parabolic problems. Numer. Math. 135, 333–370 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhu, S., Dedè, L., Quarteroni, A.: Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation. ESAIM Math. Model. Numer. Anal. 51, 1197–1221 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported in part by Science and Technology Commission of Shanghai Municipality (No. 18dz2271000), Natural Science Foundation of Shanghai (Grant No. 19ZR1414100), and the National Natural Science Foundation of China under grants 11201153 and 11571115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhu, S. Isogeometric analysis for time-fractional partial differential equations. Numer Algor 85, 909–930 (2020). https://doi.org/10.1007/s11075-019-00844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00844-1

Keywords

Mathematics Subject Classification (2010)

Navigation