Superconvergence analysis of a two-grid method for an energy-stable Ciarlet-Raviart type scheme of Cahn-Hilliard equation

Abstract

In this paper, superconvergence analysis of a mixed finite element method (MFEM) combined with the two-grid method (TGM) is presented for the Cahn-Hilliard (CH) equation for the first time. In particular, the discrete energy-stable Ciarlet-Raviart scheme is constructed with the bilinear element. By use of the high accuracy character of the element, the superclose estimates are deduced for both of the traditional MFEM and of the TGM. Crucially, the main difficulty brought by the coupling of the unknowns is dealt with by some technical methods. Furthermore, the global superconvergent results are achieved by interpolation postprocessing skill. Numerical results illustrate that the proposed TGM is very effective and its computing cost is almost one-third of that of the traditional FEM without loss of accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Cahn, J.W.: On spinodal decomposition. Acta. Metall. 9, 795 (1961)

    Article  Google Scholar 

  2. 2.

    Cahn, J.W., Hilliard, JE: Free energy of a nonuniform system I, Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    MATH  Article  Google Scholar 

  3. 3.

    Hilliard, J.E.: Spinodal decomposition. Phase transformations in ASM Cleveland, 497–560 (1970)

  4. 4.

    Novick, C.A.: The Cahn-Hilliard equation:mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8(2), 965–985 (1998)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Cahn, J.W., Elliot, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Cahn, J.W., Novick, C.A.: Limiting motion for anAllen-Cahn/Cahn-Hilliard system. In: Free Boundary Problems Theory and Applications, pp 89–97, Harlow (1996)

  7. 7.

    Bates, P.W., Fife, P.C.: The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Miranville, A., Zelik, S.: Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci. 28, 709–735 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Zheng, S., Milani, A.: Global attractors for singular perturbations of the Cahn-Hilliard equations. J. Diff. Equations 209, 101–139 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Willie, R.: The Cahn-Hilliard equation with boundary nonlinearity and high viscosity. Methods Appl. Anal. 10, 589–602 (2003)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Alikakos, N.D., Fusco, G., Karali, G.: Motion of bubbles towards the boundary for the Cahn-Hilliard equation. Euro. J. Appl. Math. 15, 103–124 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    He, Y., Liu, Y.: Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation. Numer. Methods Partial Differ. Eq. 24(6), 1485–1500 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Li, D., Qiao, Z.: On second order semi-implicit fourier spectral methods for 2D Cahn-Hilliard equations. J. Sci. Comput. 70(1), 301–34 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Khiari, N., Achouri, T., Ben Mohamed, M.L., Omrani, K.: Finite difference approximate solutions for the Cahn-Hilliard equation. Numer. Methods Partial Differ. Eq. 23(2), 437–455 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Chen, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 362 (15), 574–595 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Tang, P., Qiu, F., Zhang, H., Yang, Y.: Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. Phys. Rev. E. 72, 016710 (2005)

    Article  Google Scholar 

  17. 17.

    Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Liu, Q., Chen, L., Zhou, J.: Two-level methods for the Cahn-Hilliard equation. Math. Comput. in Simula. 126(C), 89–103 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Wang, W., Chen, L., Zhou, J.: Postprocessing mixed finite element methods for solving Cahn-Hilliard equation: methods and error analysis. J. Sci. Comput. 67, 724–746 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Elliott, C.M., French, D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99, 47–84 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Brenner, S.C., Diegel, A.E., Li-Yeng, S.: A robust solver for a mixed finite element method for the Cahn-Hilliard equation. J. Sci. Comput. 77, 1234–1249 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30, 180–203 (2014)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Diegel, A.E., Wang, C., Wise, S.M.: Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation. IMA J. Numer. AnaL. 36, 1867–1897 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 23 (2), 572–602 (2018)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Xu, J.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Xu, J.: Two-grid discretization techniques for linear and non-linear pdes. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Dawson, C., Wheeler, M., Woodward, C.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction diffusion equations. Int. J. Numer. Mech. Eng. 57, 193–209 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Liu, W., Yin, Z., Li, J.: A two-grid algorithm based on expanded mixed element discretizations for strongly nonlinear elliptic equations. Numer. Algor. 70(1), 93–111 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Shi, D., Yang, H.: Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation. Appl. Math. Comput. 310, 40–47 (2017)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Chen, Y., Chen, L., Zhang, X.: Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods. Numer. Methods Partial Differ. Eq. 29(4), 1238–1256 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Zuo, L., Du, G.: A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. Numer. Algor. 77(1), 151–165 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468, 406–422 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Shi, D., Mu, P., Yang, H.: Superconvergence analysis of a two-grid method for semilinear parabolic equations. Appl. Math. Lett. 84, 34–41 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Zhou, J., Chen, L., Huang, Y., Wang, W.: An efficient two-grid scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 17(1), 127–145 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  39. 39.

    Diegel, A., Feng, X., Wise, S.M.: Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25(1), 160–181 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Shi, D., Pei, L.: Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput. 219(17), 9447–9460 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China (Grant No. 11671369).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongyang Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Shi, D. Superconvergence analysis of a two-grid method for an energy-stable Ciarlet-Raviart type scheme of Cahn-Hilliard equation. Numer Algor 85, 607–622 (2020). https://doi.org/10.1007/s11075-019-00829-0

Download citation

Keywords

  • CH equation
  • MFEM
  • TGM
  • Superconvergent estimates